causalml
关于CausalML
因果机器学习简介
安装
API 快速入门
示例
方法论
可解释的因果机器学习
验证
causalml package
参考文献
更新日志
causalml
Index
索引
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
K
|
L
|
M
|
N
|
O
|
P
|
Q
|
R
|
S
|
T
|
U
|
X
A
ape() (在模块 causalml.metrics 中)
arr_evaluate_Chi() (causalml.inference.tree.UpliftTreeClassifier 静态方法)
arr_evaluate_CIT() (causalml.inference.tree.UpliftTreeClassifier 静态方法)
arr_evaluate_CTS() (causalml.inference.tree.UpliftTreeClassifier 静态方法)
arr_evaluate_DDP() (causalml.inference.tree.UpliftTreeClassifier 静态方法)
arr_evaluate_ED() (causalml.inference.tree.UpliftTreeClassifier 静态方法)
arr_evaluate_IDDP() (causalml.inference.tree.UpliftTreeClassifier 静态方法)
arr_evaluate_IT() (causalml.inference.tree.UpliftTreeClassifier 静态方法)
arr_evaluate_KL() (causalml.inference.tree.UpliftTreeClassifier 静态方法)
arr_normI() (causalml.inference.tree.UpliftTreeClassifier 方法)
auuc_score() (在模块 causalml.metrics 中)
B
bar_plot_summary() (在模块 causalml.dataset 中)
bar_plot_summary_holdout() (在模块 causalml.dataset 中)
BaseDRIVLearner (类在 causalml.inference.iv 中)
BaseDRIVRegressor (类在 causalml.inference.iv 中)
BaseDRLearner (类在 causalml.inference.meta 中)
BaseDRRegressor (类在 causalml.inference.meta 中)
BaseRClassifier (类在 causalml.inference.meta 中)
BaseRLearner (类在 causalml.inference.meta 中)
BaseRRegressor (类在 causalml.inference.meta 中)
BaseSClassifier (类在 causalml.inference.meta 中)
BaseSLearner (类在 causalml.inference.meta 中)
BaseSRegressor (类在 causalml.inference.meta 中)
BaseTClassifier (类在 causalml.inference.meta 中)
BaseTLearner (类在 causalml.inference.meta 中)
BaseTRegressor (类在 causalml.inference.meta 中)
BaseXClassifier (类在 causalml.inference.meta 中)
BaseXLearner (类在 causalml.inference.meta 中)
BaseXRegressor (类在 causalml.inference.meta 中)
bootstrap() (causalml.inference.iv.BaseDRIVLearner 方法)
(causalml.inference.tree.CausalTreeRegressor 方法)
(causalml.inference.tree.UpliftRandomForestClassifier 静态方法)
bootstrap_pool() (causalml.inference.tree.CausalTreeRegressor 方法)
C
calculate_error() (causalml.inference.tree.CausalRandomForestRegressor 方法)
calibrate() (在模块 causalml.propensity 中)
caliper (causalml.match.NearestNeighborMatch 属性)
cat_continuous() (在模块 causalml.inference.tree 中)
cat_group() (在模块 causalml.inference.tree 中)
cat_transform() (在模块 causalml.inference.tree 中)
causalml
模块
causalml.dataset
模块
causalml.feature_selection
模块
causalml.features
模块
causalml.inference.iv
模块
causalml.inference.meta
模块
causalml.inference.tree
模块
causalml.match
模块
causalml.metrics
模块
causalml.optimize
模块
causalml.propensity
模块
CausalRandomForestRegressor (causalml.inference.tree 中的类)
causalsens() (causalml.metrics.SensitivitySelectionBias 方法)
CausalTreeRegressor (causalml.inference.tree 中的类)
check_table_one() (causalml.match.MatchOptimizer 方法)
classification_metrics() (在模块 causalml.metrics 中)
classify() (causalml.inference.tree.UpliftTreeClassifier 静态方法)
compute_propensity_score() (在模块 causalml.propensity 中)
CounterfactualUnitSelector (causalml.optimize 中的类)
CounterfactualValueEstimator (causalml.optimize 中的类)
create_table_one() (在模块 causalml.match 中)
cv_fold_index() (在模块 causalml.inference.tree 中)
D
DecisionTree (causalml.inference.tree 中的类)
distr_plot_single_sim() (在模块 causalml.dataset 中)
divideSet() (causalml.inference.tree.UpliftTreeClassifier 静态方法)
divideSet_len() (causalml.inference.tree.UpliftTreeClassifier 静态方法)
E
ElasticNetPropensityModel (class in causalml.propensity)
estimate_ate() (causalml.inference.iv.BaseDRIVLearner method)
(causalml.inference.meta.BaseDRLearner method)
(causalml.inference.meta.BaseRLearner method)
(causalml.inference.meta.BaseSLearner method)
(causalml.inference.meta.BaseTLearner method)
(causalml.inference.meta.BaseXLearner method)
(causalml.inference.meta.LRSRegressor method)
(causalml.inference.meta.TMLELearner method)
(causalml.inference.tree.CausalTreeRegressor method)
evaluate_Chi() (causalml.inference.tree.UpliftTreeClassifier static method)
evaluate_CIT() (causalml.inference.tree.UpliftTreeClassifier static method)
evaluate_CTS() (causalml.inference.tree.UpliftTreeClassifier static method)
evaluate_DDP() (causalml.inference.tree.UpliftTreeClassifier static method)
evaluate_ED() (causalml.inference.tree.UpliftTreeClassifier static method)
evaluate_IDDP() (causalml.inference.tree.UpliftTreeClassifier static method)
evaluate_IT() (causalml.inference.tree.UpliftTreeClassifier static method)
evaluate_KL() (causalml.inference.tree.UpliftTreeClassifier static method)
F
fill() (causalml.inference.tree.UpliftTreeClassifier method)
fillTree() (causalml.inference.tree.UpliftTreeClassifier method)
filter_D() (causalml.feature_selection.FilterSelect method)
filter_F() (causalml.feature_selection.FilterSelect method)
filter_LR() (causalml.feature_selection.FilterSelect method)
FilterSelect (class in causalml.feature_selection)
fit() (causalml.features.LabelEncoder method)
(causalml.features.OneHotEncoder method)
(causalml.inference.iv.BaseDRIVLearner method)
(causalml.inference.iv.IVRegressor method)
(causalml.inference.meta.BaseDRLearner method)
(causalml.inference.meta.BaseRClassifier method)
(causalml.inference.meta.BaseRLearner method)
(causalml.inference.meta.BaseSLearner method)
(causalml.inference.meta.BaseTLearner method)
(causalml.inference.meta.BaseXClassifier method)
(causalml.inference.meta.BaseXLearner method)
(causalml.inference.meta.XGBRRegressor method)
(causalml.inference.tree.CausalRandomForestRegressor method)
(causalml.inference.tree.CausalTreeRegressor method)
(causalml.inference.tree.UpliftRandomForestClassifier method)
(causalml.inference.tree.UpliftTreeClassifier method)
(causalml.optimize.CounterfactualUnitSelector method)
(causalml.optimize.PolicyLearner method)
(causalml.propensity.GradientBoostedPropensityModel method)
(causalml.propensity.PropensityModel method)
fit_predict() (causalml.inference.iv.BaseDRIVLearner method)
(causalml.inference.meta.BaseDRLearner method)
(causalml.inference.meta.BaseRLearner method)
(causalml.inference.meta.BaseSLearner method)
(causalml.inference.meta.BaseTLearner method)
(causalml.inference.meta.BaseXLearner method)
(causalml.inference.tree.CausalTreeRegressor method)
(causalml.propensity.PropensityModel method)
fit_transform() (causalml.features.LabelEncoder method)
(causalml.features.OneHotEncoder method)
G
get_actual_value() (在模块 causalml.optimize 中)
get_ate_ci() (causalml.metrics.Sensitivity 方法)
get_class_object() (causalml.metrics.Sensitivity 静态方法)
get_cumgain() (在模块 causalml.metrics 中)
get_cumlift() (在模块 causalml.metrics 中)
get_importance() (causalml.feature_selection.FilterSelect 方法)
(causalml.inference.iv.BaseDRIVLearner 方法)
get_pns_bounds() (在模块 causalml.optimize 中)
get_prediction() (causalml.metrics.Sensitivity 方法)
get_qini() (在模块 causalml.metrics 中)
get_shap_values() (causalml.inference.iv.BaseDRIVLearner 方法)
get_synthetic_auuc() (在模块 causalml.dataset 中)
get_synthetic_preds() (在模块 causalml.dataset 中)
get_synthetic_preds_holdout() (在模块 causalml.dataset 中)
get_synthetic_summary() (在模块 causalml.dataset 中)
get_synthetic_summary_holdout() (在模块 causalml.dataset 中)
get_tmlegain() (在模块 causalml.metrics 中)
get_tmleqini() (在模块 causalml.metrics 中)
get_treatment_costs() (在模块 causalml.optimize 中)
get_tree_leaves_mask() (在模块 causalml.inference.tree 中)
get_uplift_best() (在模块 causalml.optimize 中)
gini() (在模块 causalml.metrics 中)
GradientBoostedPropensityModel (类在 causalml.propensity 中)
group_uniqueCounts() (causalml.inference.tree.UpliftTreeClassifier 方法)
growDecisionTreeFrom() (causalml.inference.tree.UpliftTreeClassifier 方法)
H
honestApproach() (causalml.inference.tree.UpliftTreeClassifier 方法)
我
IVRegressor (causalml.inference.iv 中的类)
K
kpi_transform() (在模块 causalml.inference.tree 中)
L
label_encoders (causalml.features.LabelEncoder 属性)
(causalml.features.OneHotEncoder 属性)
label_maxes (causalml.features.LabelEncoder 属性)
LabelEncoder (causalml.features 中的类)
load_data() (在模块 causalml.features 中)
LogisticRegressionPropensityModel (causalml.propensity 中的类)
logloss() (在模块 causalml.metrics 中)
LRSRegressor (causalml.inference.meta 中的类)
M
mae() (在模块 causalml.metrics 中)
make_uplift_classification() (在模块 causalml.dataset 中)
make_uplift_classification_logistic() (在模块 causalml.dataset 中)
mape() (在模块 causalml.metrics 中)
match() (causalml.match.NearestNeighborMatch 方法)
match_and_check() (causalml.match.MatchOptimizer 方法)
match_by_group() (causalml.match.NearestNeighborMatch 方法)
MatchOptimizer (causalml.match 中的类)
min_obs (causalml.features.LabelEncoder 属性)
(causalml.features.OneHotEncoder 属性)
MLPTRegressor (causalml.inference.meta 中的类)
模块
causalml
causalml.dataset
causalml.feature_selection
causalml.features
causalml.inference.iv
causalml.inference.meta
causalml.inference.tree
causalml.match
causalml.metrics
causalml.optimize
causalml.propensity
N
n_jobs (causalml.match.NearestNeighborMatch 属性)
NearestNeighborMatch (causalml.match 中的类)
normI() (causalml.inference.tree.UpliftTreeClassifier 方法)
O
OneHotEncoder (causalml.features 中的类)
P
partial_rsqs_confounding() (causalml.metrics.SensitivitySelectionBias static method)
plot() (causalml.metrics.SensitivitySelectionBias static method)
(in module causalml.metrics)
plot_dist_tree_leaves_values() (in module causalml.inference.tree)
plot_gain() (in module causalml.metrics)
plot_importance() (causalml.inference.iv.BaseDRIVLearner method)
plot_lift() (in module causalml.metrics)
plot_qini() (in module causalml.metrics)
plot_shap_dependence() (causalml.inference.iv.BaseDRIVLearner method)
plot_shap_values() (causalml.inference.iv.BaseDRIVLearner method)
plot_tmlegain() (in module causalml.metrics)
plot_tmleqini() (in module causalml.metrics)
PolicyLearner (class in causalml.optimize)
predict() (causalml.inference.iv.BaseDRIVLearner method)
(causalml.inference.iv.IVRegressor method)
(causalml.inference.meta.BaseDRLearner method)
(causalml.inference.meta.BaseRClassifier method)
(causalml.inference.meta.BaseRLearner method)
(causalml.inference.meta.BaseSClassifier method)
(causalml.inference.meta.BaseSLearner method)
(causalml.inference.meta.BaseTClassifier method)
(causalml.inference.meta.BaseTLearner method)
(causalml.inference.meta.BaseXClassifier method)
(causalml.inference.meta.BaseXLearner method)
(causalml.inference.tree.CausalRandomForestRegressor method)
(causalml.inference.tree.CausalTreeRegressor method)
(causalml.inference.tree.UpliftRandomForestClassifier method)
(causalml.inference.tree.UpliftTreeClassifier method)
(causalml.optimize.CounterfactualUnitSelector method)
(causalml.optimize.PolicyLearner method)
(causalml.propensity.GradientBoostedPropensityModel method)
(causalml.propensity.PropensityModel method)
predict_best() (causalml.optimize.CounterfactualValueEstimator method)
predict_counterfactuals() (causalml.optimize.CounterfactualValueEstimator method)
predict_proba() (causalml.optimize.PolicyLearner method)
PropensityModel (class in causalml.propensity)
prune() (causalml.inference.tree.UpliftTreeClassifier method)
pruneTree() (causalml.inference.tree.UpliftTreeClassifier method)
Q
qini_score() (在模块 causalml.metrics 中)
R
r2_score() (在模块 causalml.metrics 中)
random_state (causalml.match.NearestNeighborMatch 属性)
ratio (causalml.match.NearestNeighborMatch 属性)
regression_metrics() (在模块 causalml.metrics 中)
replace (causalml.match.NearestNeighborMatch 属性)
rmse() (在模块 causalml.metrics 中)
roc_auc_score() (在模块 causalml.metrics 中)
S
scatter_plot_single_sim() (in module causalml.dataset)
scatter_plot_summary() (in module causalml.dataset)
scatter_plot_summary_holdout() (in module causalml.dataset)
search_best_match() (causalml.match.MatchOptimizer method)
Sensitivity (class in causalml.metrics)
sensitivity_analysis() (causalml.metrics.Sensitivity method)
sensitivity_estimate() (causalml.metrics.Sensitivity method)
(causalml.metrics.SensitivityPlaceboTreatment method)
(causalml.metrics.SensitivityRandomCause method)
(causalml.metrics.SensitivityRandomReplace method)
(causalml.metrics.SensitivitySubsetData method)
SensitivityPlaceboTreatment (class in causalml.metrics)
SensitivityRandomCause (class in causalml.metrics)
SensitivityRandomReplace (class in causalml.metrics)
SensitivitySelectionBias (class in causalml.metrics)
SensitivitySubsetData (class in causalml.metrics)
set_fit_request() (causalml.inference.tree.CausalRandomForestRegressor method)
(causalml.inference.tree.CausalTreeRegressor method)
set_predict_request() (causalml.inference.tree.CausalRandomForestRegressor method)
(causalml.inference.tree.CausalTreeRegressor method)
set_score_request() (causalml.inference.tree.CausalRandomForestRegressor method)
(causalml.inference.tree.CausalTreeRegressor method)
shuffle (causalml.match.NearestNeighborMatch attribute)
simulate_easy_propensity_difficult_baseline() (in module causalml.dataset)
simulate_hidden_confounder() (in module causalml.dataset)
simulate_nuisance_and_easy_treatment() (in module causalml.dataset)
simulate_randomized_trial() (in module causalml.dataset)
simulate_unrelated_treatment_control() (in module causalml.dataset)
single_match() (causalml.match.MatchOptimizer method)
smape() (in module causalml.metrics)
smd() (in module causalml.match)
summary() (causalml.metrics.Sensitivity method)
(causalml.metrics.SensitivitySelectionBias method)
synthetic_data() (in module causalml.dataset)
T
TMLELearner (causalml.inference.meta 中的类)
transform() (causalml.features.LabelEncoder 方法)
(causalml.features.OneHotEncoder 方法)
treatment_to_control (causalml.match.NearestNeighborMatch 属性)
tree_node_summary() (causalml.inference.tree.UpliftTreeClassifier 方法)
tree_node_summary_from_counts() (causalml.inference.tree.UpliftTreeClassifier 静态方法)
tree_node_summary_to_arr() (causalml.inference.tree.UpliftTreeClassifier 静态方法)
U
uplift_classification_results() (causalml.inference.tree.UpliftTreeClassifier 方法)
uplift_tree_plot() (在模块 causalml.inference.tree 中)
uplift_tree_string() (在模块 causalml.inference.tree 中)
UpliftRandomForestClassifier (类在 causalml.inference.tree 中)
UpliftTreeClassifier (类在 causalml.inference.tree 中)
X
XGBDRIVRegressor (class in causalml.inference.iv)
XGBDRRegressor (class in causalml.inference.meta)
XGBRRegressor (class in causalml.inference.meta)
XGBTRegressor (class in causalml.inference.meta)