! [ -e /content ] && pip install -Uqq fastai # 在Colab上升级fastaiWandb
from __future__ import annotations
from fastai.basics import *
from fastai.callback.progress import *
from fastai.text.data import TensorText
from fastai.tabular.all import TabularDataLoaders, Tabular
from fastai.callback.hook import total_params
from fastai.callback.tracker import SaveModelCallbackfrom nbdev.showdoc import *与 Weights & Biases 的集成
首先,您需要安装wandb,使用以下命令:
pip install wandb
然后创建一个免费账户,接着在终端中运行
wandb login
按照链接获取您需要粘贴的API令牌,您就准备好了!
import wandbclass WandbCallback(Callback):
"Saves model topology, losses & metrics"
remove_on_fetch,order = True,Recorder.order+1
# 记录是否已在此前调用过(即使在另一个实例中)
_wandb_watch_called = False
def __init__(self,
log:str=None, # 要记录的内容(可以是 `gradients`、`parameters`、`all` 或 None)
log_preds:bool=True, # 是否在 `wandb.Table` 上记录模型预测
log_preds_every_epoch:bool=False, # 是每个周期记录预测结果,还是在最后记录
log_model:bool=False, # 是否将模型检查点保存到 `wandb.Artifact`
model_name:str=None, # 要保存的 `model_name` 名称,覆盖 `SaveModelCallback`
log_dataset:bool=False, # 是否将数据集记录到 `wandb.Artifact`
dataset_name:str=None, # 用于记录数据集的名称
valid_dl:TfmdDL=None, # 如果 `log_preds=True`,那么将从 `valid_dl` 中抽取样本
n_preds:int=36, # 记录预测的样本数量
seed:int=12345, # 所抽取样本的种子
reorder=True):
store_attr()
def after_create(self):
# 日志模型
if self.log_model:
if not hasattr(self, 'save_model'):
# 没有使用SaveModelCallback
self.learn.add_cb(SaveModelCallback(fname=ifnone(self.model_name, 'model')))
else:
# 覆盖 SaveModelCallback
if self.model_name is not None:
self.save_model.fname = self.model_name
def before_fit(self):
"Call watch method to log model topology, gradients & weights"
# 检查是否已调用wandb.init
if wandb.run is None:
raise ValueError('You must call wandb.init() before WandbCallback()')
# W&B日志步骤
self._wandb_step = wandb.run.step - 1 # -1,除非运行先前已记录数据(每批次递增)
self._wandb_epoch = 0 if not(wandb.run.step) else math.ceil(wandb.run.summary['epoch']) # 继续到下一个时期
self.run = not hasattr(self.learn, 'lr_finder') and not hasattr(self, "gather_preds") and rank_distrib()==0
if not self.run: return
# 日志配置参数
log_config = self.learn.gather_args()
_format_config(log_config)
try:
wandb.config.update(log_config, allow_val_change=True)
except Exception as e:
print(f'WandbCallback could not log config parameters -> {e}')
if not WandbCallback._wandb_watch_called:
WandbCallback._wandb_watch_called = True
# 日志记录模型拓扑结构,并可选择性地记录梯度和权重。
if self.log is not None:
wandb.watch(self.learn.model, log=self.log)
# 日志数据集
assert isinstance(self.log_dataset, (str, Path, bool)), 'log_dataset must be a path or a boolean'
if self.log_dataset is True:
if Path(self.dls.path) == Path('.'):
print('WandbCallback could not retrieve the dataset path, please provide it explicitly to "log_dataset"')
self.log_dataset = False
else:
self.log_dataset = self.dls.path
if self.log_dataset:
self.log_dataset = Path(self.log_dataset)
assert self.log_dataset.is_dir(), f'log_dataset must be a valid directory: {self.log_dataset}'
metadata = {'path relative to learner': os.path.relpath(self.log_dataset, self.learn.path)}
log_dataset(path=self.log_dataset, name=self.dataset_name, metadata=metadata)
if self.log_preds:
try:
if not self.valid_dl:
#初始化批量观察
wandbRandom = random.Random(self.seed) # 为了确保可重复性
self.n_preds = min(self.n_preds, len(self.dls.valid_ds))
idxs = wandbRandom.sample(range(len(self.dls.valid_ds)), self.n_preds)
if isinstance(self.dls, TabularDataLoaders):
test_items = getattr(self.dls.valid_ds.items, 'iloc', self.dls.valid_ds.items)[idxs]
self.valid_dl = self.dls.test_dl(test_items, with_labels=True, process=False)
else:
test_items = [getattr(self.dls.valid_ds.items, 'iloc', self.dls.valid_ds.items)[i] for i in idxs]
self.valid_dl = self.dls.test_dl(test_items, with_labels=True)
self.learn.add_cb(FetchPredsCallback(dl=self.valid_dl, with_input=True, with_decoded=True, reorder=self.reorder))
except Exception as e:
self.log_preds = False
print(f'WandbCallback was not able to prepare a DataLoader for logging prediction samples -> {e}')
def before_batch(self):
self.ti_batch = time.perf_counter()
def after_batch(self):
"Log hyper-parameters and training loss"
if self.training:
batch_time = time.perf_counter() - self.ti_batch
self._wandb_step += 1
self._wandb_epoch += 1/self.n_iter
hypers = {f'{k}_{i}':v for i,h in enumerate(self.opt.hypers) for k,v in h.items()}
wandb.log({'epoch': self._wandb_epoch, 'train_loss': self.smooth_loss, 'raw_loss': self.loss, **hypers}, step=self._wandb_step)
wandb.log({'train_samples_per_sec': len(self.xb[0]) / batch_time}, step=self._wandb_step)
def log_predictions(self):
try:
inp,preds,targs,out = self.learn.fetch_preds.preds
b = tuplify(inp) + tuplify(targs)
x,y,its,outs = self.valid_dl.show_results(b, out, show=False, max_n=self.n_preds)
wandb.log(wandb_process(x, y, its, outs, preds), step=self._wandb_step)
except Exception as e:
self.log_preds = False
self.remove_cb(FetchPredsCallback)
print(f'WandbCallback was not able to get prediction samples -> {e}')
def after_epoch(self):
"Log validation loss and custom metrics & log prediction samples"
# 修正任何纪元舍入误差并覆盖原值
self._wandb_epoch = round(self._wandb_epoch)
if self.log_preds and self.log_preds_every_epoch:
self.log_predictions()
wandb.log({'epoch': self._wandb_epoch}, step=self._wandb_step)
wandb.log({n:s for n,s in zip(self.recorder.metric_names, self.recorder.log) if n not in ['train_loss', 'epoch', 'time']}, step=self._wandb_step)
def after_fit(self):
if self.log_preds and not self.log_preds_every_epoch:
self.log_predictions()
if self.log_model:
if self.save_model.last_saved_path is None:
print('WandbCallback could not retrieve a model to upload')
else:
metadata = {n:s for n,s in zip(self.recorder.metric_names, self.recorder.log) if n not in ['train_loss', 'epoch', 'time']}
log_model(self.save_model.last_saved_path, name=self.save_model.fname, metadata=metadata)
self.run = True
if self.log_preds: self.remove_cb(FetchPredsCallback)
wandb.log({}) # 确保上一步同步完成
self._wandb_step += 1
show_doc(WandbCallback)WandbCallback
WandbCallback (log:'str'=None, log_preds:'bool'=True, log_preds_every_epoch:'bool'=False, log_model:'bool'=False, model_name:'str'=None, log_dataset:'bool'=False, dataset_name:'str'=None, valid_dl:'TfmdDL'=None, n_preds:'int'=36, seed:'int'=12345, reorder=True)
Saves model topology, losses & metrics
| Type | Default | Details | |
|---|---|---|---|
| log | str | None | What to log (can be gradients, parameters, all or None) |
| log_preds | bool | True | Whether to log model predictions on a wandb.Table |
| log_preds_every_epoch | bool | False | Whether to log predictions every epoch or at the end |
| log_model | bool | False | Whether to save the model checkpoint to a wandb.Artifact |
| model_name | str | None | The name of the model_name to save, overrides SaveModelCallback |
| log_dataset | bool | False | Whether to log the dataset to a wandb.Artifact |
| dataset_name | str | None | A name to log the dataset with |
| valid_dl | TfmdDL | None | If log_preds=True, then the samples will be drawn from valid_dl |
| n_preds | int | 36 | How many samples to log predictions |
| seed | int | 12345 | The seed of the samples drawn |
| reorder | bool | True |
可选地根据 log 记录权重和/或梯度(可以是 “gradients”、“parameters”、“all” 或 None),如果 log_preds=True,则从 valid_dl 或验证集的随机样本(由 seed 决定)中采样预测。在这种情况下,记录 n_preds。
如果与 SaveModelCallback 结合使用,最佳模型也会被保存(可以通过设置 log_model=False 来停用)。
数据集也可以被跟踪:
- 如果
log_dataset为True,则从learn.dls.path获取跟踪文件夹 log_dataset可以显式设置为要跟踪的文件夹- 数据集的名称可以通过
dataset_name显式给出,否则将设置为文件夹名称 - 注意:子文件夹 “models” 始终被忽略
对于自定义场景,您还可以手动使用函数 log_dataset 和 log_model 分别记录您自己的数据集和模型。
@patch
def gather_args(self:Learner):
"Gather config parameters accessible to the learner"
# 由 `store_attr` 存储的参数
cb_args = {f'{cb}':getattr(cb,'__stored_args__',True) for cb in self.cbs}
args = {'Learner':self, **cb_args}
# 输入维度
try:
n_inp = self.dls.train.n_inp
args['n_inp'] = n_inp
xb = self.dls.valid.one_batch()[:n_inp]
args.update({f'input {n+1} dim {i+1}':d for n in range(n_inp) for i,d in enumerate(list(detuplify(xb[n]).shape))})
except: print(f'Could not gather input dimensions')
# 其他有用信息
with ignore_exceptions():
args['batch size'] = self.dls.bs
args['batch per epoch'] = len(self.dls.train)
args['model parameters'] = total_params(self.model)[0]
args['device'] = self.dls.device.type
args['frozen'] = bool(self.opt.frozen_idx)
args['frozen idx'] = self.opt.frozen_idx
args['dataset.tfms'] = f'{self.dls.dataset.tfms}'
args['dls.after_item'] = f'{self.dls.after_item}'
args['dls.before_batch'] = f'{self.dls.before_batch}'
args['dls.after_batch'] = f'{self.dls.after_batch}'
return argsshow_doc(Learner.gather_args)Learner.gather_args
Learner.gather_args ()
Gather config parameters accessible to the learner
def _make_plt(img):
"Make plot to image resolution"
# 来自 https://stackoverflow.com/a/13714915
my_dpi = 100
fig = plt.figure(frameon=False, dpi=my_dpi)
h, w = img.shape[:2]
fig.set_size_inches(w / my_dpi, h / my_dpi)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
return fig, axdef _format_config_value(v):
if isinstance(v, list):
return [_format_config_value(item) for item in v]
elif hasattr(v, '__stored_args__'):
return {**_format_config(v.__stored_args__), '_name': v}
return vdef _format_config(config):
"Format config parameters before logging them"
for k,v in config.items():
if isinstance(v, dict):
config[k] = _format_config(v)
else:
config[k] = _format_config_value(v)
return configdef _format_metadata(metadata):
"Format metadata associated to artifacts"
for k,v in metadata.items(): metadata[k] = str(v)def log_dataset(path, name=None, metadata={}, description='raw dataset'):
"Log dataset folder"
# 检查是否已调用wandb.init,以防手动记录数据集
if wandb.run is None:
raise ValueError('You must call wandb.init() before log_dataset()')
path = Path(path)
if not path.is_dir():
raise f'path must be a valid directory: {path}'
name = ifnone(name, path.name)
_format_metadata(metadata)
artifact_dataset = wandb.Artifact(name=name, type='dataset', metadata=metadata, description=description)
# log everything except "models" folder
for p in path.ls():
if p.is_dir():
if p.name != 'models': artifact_dataset.add_dir(str(p.resolve()), name=p.name)
else: artifact_dataset.add_file(str(p.resolve()))
wandb.run.use_artifact(artifact_dataset)show_doc(log_dataset)log_dataset
log_dataset (path, name=None, metadata={}, description='rawdataset')
Log dataset folder
def log_model(path, name=None, metadata={}, description='trained model'):
"Log model file"
if wandb.run is None:
raise ValueError('You must call wandb.init() before log_model()')
path = Path(path)
if not path.is_file():
raise f'path must be a valid file: {path}'
name = ifnone(name, f'run-{wandb.run.id}-model')
_format_metadata(metadata)
artifact_model = wandb.Artifact(name=name, type='model', metadata=metadata, description=description)
with artifact_model.new_file(str(Path(name).with_suffix(".pth")), mode='wb') as fa:
fa.write(path.read_bytes())
wandb.run.log_artifact(artifact_model)show_doc(log_model)log_model
log_model (path, name=None, metadata={}, description='trainedmodel')
Log model file
@typedispatch
def wandb_process(x:TensorImage, y, samples, outs, preds):
"Process `sample` and `out` depending on the type of `x/y`"
res_input, res_pred, res_label = [],[],[]
for s,o in zip(samples, outs):
img = s[0].permute(1,2,0)
res_input.append(wandb.Image(img, caption='Input_data'))
for t, capt, res in ((o[0], "Prediction", res_pred), (s[1], "Ground_Truth", res_label)):
fig, ax = _make_plt(img)
# 在输入图像上叠加标签或预测结果
ax = img.show(ctx=ax)
ax = t.show(ctx=ax)
res.append(wandb.Image(fig, caption=capt))
plt.close(fig)
return {"Inputs":res_input, "Predictions":res_pred, "Ground_Truth":res_label}def _unlist(l):
"get element of lists of lenght 1"
if isinstance(l, (list, tuple)):
if len(l) == 1: return l[0]
else: return l@typedispatch
def wandb_process(x:TensorImage, y:TensorCategory|TensorMultiCategory, samples, outs, preds):
table = wandb.Table(columns=["Input image", "Ground_Truth", "Predictions"])
for (image, label), pred_label in zip(samples,outs):
table.add_data(wandb.Image(image.permute(1,2,0)), label, _unlist(pred_label))
return {"Prediction_Samples": table}@typedispatch
def wandb_process(x:TensorImage, y:TensorMask, samples, outs, preds):
res = []
codes = getattr(outs[0][0], 'codes', None)
if codes is not None:
class_labels = [{'name': name, 'id': id} for id, name in enumerate(codes)]
else:
class_labels = [{'name': i, 'id': i} for i in range(preds.shape[1])]
table = wandb.Table(columns=["Input Image", "Ground_Truth", "Predictions"])
for (image, label), pred_label in zip(samples, outs):
img = image.permute(1,2,0)
table.add_data(wandb.Image(img),
wandb.Image(img, masks={"Ground_Truth": {'mask_data': label.numpy().astype(np.uint8)}}, classes=class_labels),
wandb.Image(img, masks={"Prediction": {'mask_data': pred_label[0].numpy().astype(np.uint8)}}, classes=class_labels)
)
return {"Prediction_Samples": table}@typedispatch
def wandb_process(x:TensorText, y:TensorCategory|TensorMultiCategory, samples, outs, preds):
data = [[s[0], s[1], o[0]] for s,o in zip(samples,outs)]
return {"Prediction_Samples": wandb.Table(data=data, columns=["Text", "Target", "Prediction"])}@typedispatch
def wandb_process(x:Tabular, y:Tabular, samples, outs, preds):
df = x.all_cols
for n in x.y_names: df[n+'_pred'] = y[n].values
return {"Prediction_Samples": wandb.Table(dataframe=df)}使用示例:
一旦定义了你的 Learner,在调用 fit 或 fit_one_cycle 之前,你需要初始化 wandb:
import wandb
wandb.init()
如果你希望在没有账户的情况下使用 Weights & Biases,可以调用 wandb.init(anonymous='allow')。
然后将回调添加到你的 learner 或在调用 fit 方法时,可能会使用 SaveModelCallback 如果你想保存最佳模型:
from fastai.callback.wandb import *
# 仅在一个训练阶段记录
learn.fit(..., cbs=WandbCallback())
# 在所有训练阶段持续记录
learn = learner(..., cbs=WandbCallback())
数据集和模型可以通过回调或者直接通过 log_model 和 log_dataset 函数进行跟踪。
有关更多详细信息,请参考 W&B 文档。
#|缓慢
from fastai.vision.all import *
import tempfile#|缓慢
path = untar_data(URLs.MNIST_TINY)
items = get_image_files(path)
tds = Datasets(items, [PILImageBW.create, [parent_label, Categorize()]], splits=GrandparentSplitter()(items))
dls = tds.dataloaders(after_item=[ToTensor(), IntToFloatTensor()])
os.environ['WANDB_MODE'] = 'dryrun' # 离线运行
with tempfile.TemporaryDirectory() as wandb_local_dir:
wandb.init(anonymous='allow', dir=wandb_local_dir)
learn = vision_learner(dls, resnet18, loss_func=CrossEntropyLossFlat(), cbs=WandbCallback(log_model=False))
learn.fit(1)
# 在同一运行中添加来自新学习者的更多数据
learn = vision_learner(dls, resnet18, loss_func=CrossEntropyLossFlat(), cbs=WandbCallback(log_model=False))
learn.fit(1, lr=slice(0.005))
# 保存模型
learn = cnn_learner(dls, resnet18, loss_func=CrossEntropyLossFlat(), cbs=WandbCallback(log_model=True))
learn.fit(1, lr=slice(0.005))
# 保存模型覆盖名称
learn = cnn_learner(dls, resnet18, path=wandb_local_dir,loss_func=CrossEntropyLossFlat(), cbs=[WandbCallback(log_model=True, model_name="good_name"), SaveModelCallback(fname="bad_name")])
learn.fit(1, lr=slice(0.005))
assert (Path(wandb_local_dir)/"models/good_name.pth").exists(), "No model file found"
# 完成将文件写入临时文件夹
wandb.finish()
Tracking run with wandb version 0.12.17
W&B syncing is set to
`offline` in this directory.
Run `wandb online` or set WANDB_MODE=online to enable cloud syncing.
epoch
train_loss
valid_loss
time
0
0.707184
0.196000
00:02
epoch
train_loss
valid_loss
time
0
0.707796
0.522665
00:02
epoch
train_loss
valid_loss
time
0
0.599319
0.323519
00:02
Better model found at epoch 0 with valid_loss value: 0.32351893186569214.
epoch
train_loss
valid_loss
time
0
0.854327
0.279063
00:02
Better model found at epoch 0 with valid_loss value: 0.279062956571579.
Waiting for W&B process to finish... (success).
Run history:
epoch
▁▁▁▁▂▂▂▂▂▂▃▃▃▃▃▄▄▄▄▄▅▅▅▅▅▅▆▆▆▆▆▇▇▇▇▇▇███
eps_0
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
eps_1
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
eps_2
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
lr_0
██████████▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
lr_1
██████████▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
lr_2
▁▁▁▁▁▁▁▁▁▁██████████████████████████████
mom_0
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
mom_1
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
mom_2
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
raw_loss
█▄▃▃▁▁▂▄▂▄▇▄▃▂▄▁▃▃▃▂▆▄▄▂▃▃▁▁▂▁█▄▃▂▃▂▂▇▃▂
sqr_mom_0
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
sqr_mom_1
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
sqr_mom_2
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
train_loss
▇▅▄▃▃▂▂▂▂▂▇▅▄▃▃▂▂▂▂▂▅▄▄▃▃▂▂▁▁▁█▅▄▃▃▂▂▃▂▃
train_samples_per_sec
▃▇███▇▇███▃▄▇███▇▇▇█▃▇▇▅▆▆▆███▁▇█▇▇▇▆▆██
valid_loss
▁█▄▃
wd_0
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wd_1
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
wd_2
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Run summary:
epoch
4
eps_0
1e-05
eps_1
1e-05
eps_2
1e-05
lr_0
0.0005
lr_1
0.0005
lr_2
0.005
mom_0
0.9
mom_1
0.9
mom_2
0.9
raw_loss
0.47733
sqr_mom_0
0.99
sqr_mom_1
0.99
sqr_mom_2
0.99
train_loss
0.85433
train_samples_per_sec
3029.923
valid_loss
0.27906
wd_0
0.01
wd_1
0.01
wd_2
0.01
You can sync this run to the cloud by running:
wandb sync /tmp/tmpcbvaf5w6/wandb/offline-run-20220609_163612-2jh9cxyp
Find logs at: /tmp/tmpcbvaf5w6/wandb/offline-run-20220609_163612-2jh9cxyp/logs
_all_ = ['wandb_process']
导出 -
from nbdev import *
nbdev_export()
Converted 00_torch_core.ipynb.
Converted 01_layers.ipynb.
Converted 01a_losses.ipynb.
Converted 02_data.load.ipynb.
Converted 03_data.core.ipynb.
Converted 04_data.external.ipynb.
Converted 05_data.transforms.ipynb.
Converted 06_data.block.ipynb.
Converted 07_vision.core.ipynb.
Converted 08_vision.data.ipynb.
Converted 09_vision.augment.ipynb.
Converted 09b_vision.utils.ipynb.
Converted 09c_vision.widgets.ipynb.
Converted 10_tutorial.pets.ipynb.
Converted 10b_tutorial.albumentations.ipynb.
Converted 11_vision.models.xresnet.ipynb.
Converted 12_optimizer.ipynb.
Converted 13_callback.core.ipynb.
Converted 13a_learner.ipynb.
Converted 13b_metrics.ipynb.
Converted 14_callback.schedule.ipynb.
Converted 14a_callback.data.ipynb.
Converted 15_callback.hook.ipynb.
Converted 15a_vision.models.unet.ipynb.
Converted 16_callback.progress.ipynb.
Converted 17_callback.tracker.ipynb.
Converted 18_callback.fp16.ipynb.
Converted 18a_callback.training.ipynb.
Converted 18b_callback.preds.ipynb.
Converted 19_callback.mixup.ipynb.
Converted 20_interpret.ipynb.
Converted 20a_distributed.ipynb.
Converted 20b_tutorial.distributed.ipynb.
Converted 21_vision.learner.ipynb.
Converted 22_tutorial.imagenette.ipynb.
Converted 23_tutorial.vision.ipynb.
Converted 24_tutorial.image_sequence.ipynb.
Converted 24_tutorial.siamese.ipynb.
Converted 24_vision.gan.ipynb.
Converted 30_text.core.ipynb.
Converted 31_text.data.ipynb.
Converted 32_text.models.awdlstm.ipynb.
Converted 33_text.models.core.ipynb.
Converted 34_callback.rnn.ipynb.
Converted 35_tutorial.wikitext.ipynb.
Converted 37_text.learner.ipynb.
Converted 38_tutorial.text.ipynb.
Converted 39_tutorial.transformers.ipynb.
Converted 40_tabular.core.ipynb.
Converted 41_tabular.data.ipynb.
Converted 42_tabular.model.ipynb.
Converted 43_tabular.learner.ipynb.
Converted 44_tutorial.tabular.ipynb.
Converted 45_collab.ipynb.
Converted 46_tutorial.collab.ipynb.
Converted 50_tutorial.datablock.ipynb.
Converted 60_medical.imaging.ipynb.
Converted 61_tutorial.medical_imaging.ipynb.
Converted 65_medical.text.ipynb.
Converted 70_callback.wandb.ipynb.
Converted 70a_callback.tensorboard.ipynb.
Converted 70b_callback.neptune.ipynb.
Converted 70c_callback.captum.ipynb.
Converted 70d_callback.comet.ipynb.
Converted 74_huggingface.ipynb.
Converted 97_test_utils.ipynb.
Converted 99_pytorch_doc.ipynb.
Converted dev-setup.ipynb.
Converted app_examples.ipynb.
Converted camvid.ipynb.
Converted distributed_app_examples.ipynb.
Converted migrating_catalyst.ipynb.
Converted migrating_ignite.ipynb.
Converted migrating_lightning.ipynb.
Converted migrating_pytorch.ipynb.
Converted migrating_pytorch_verbose.ipynb.
Converted ulmfit.ipynb.
Converted index.ipynb.
Converted quick_start.ipynb.
Converted tutorial.ipynb.