featuretools.primitives.CountAboveMean#
- class featuretools.primitives.CountAboveMean(skipna=True)[source]#
计算高于均值的数值个数.
- Parameters:
skipna (bool) – 确定是否使用NA/null值.默认为True,跳过NA/null.
Examples
>>> count_above_mean = CountAboveMean() >>> count_above_mean([1, 2, 3, 4, 5]) 2
NaN的处理方式可以控制.
>>> count_above_mean_skipna = CountAboveMean(skipna=False) >>> count_above_mean_skipna([1, 2, 3, 4, 5, None]) nan
Methods
__init__([skipna])flatten_nested_input_types(input_types)将嵌套的列模式输入展平成一个列表.
generate_name(base_feature_names, ...)generate_names(base_feature_names, ...)get_args_string()get_arguments()get_description(input_column_descriptions[, ...])get_filepath(filename)get_function()Attributes
base_ofbase_of_excludecommutativedefault_valueDefault value this feature returns if no data found.
description_templateinput_typeswoodwork.ColumnSchema types of inputs
max_stack_depthnameName of the primitive
number_output_featuresNumber of columns in feature matrix associated with this feature
return_typeColumnSchema type of return
stack_onstack_on_excludestack_on_selfuses_calc_time