FNetClassifier classkeras_nlp.models.FNetClassifier(
backbone, num_classes, preprocessor=None, activation=None, dropout=0.1, **kwargs
)
An end-to-end f_net model for classification tasks.
This model attaches a classification head to a
keras_nlp.model.FNetBackbone instance, mapping from the backbone outputs
to logits suitable for a classification task. For usage of this model with
pre-trained weights, use the from_preset() constructor.
This model can optionally be configured with a preprocessor layer, in
which case it will automatically apply preprocessing to raw inputs during
fit(), predict(), and evaluate(). This is done by default when
creating the model with from_preset().
Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind.
Arguments
keras_nlp.models.FNetBackbone instance.keras_nlp.models.FNetPreprocessor or None. If
None, this model will not apply preprocessing, and inputs should
be preprocessed before calling the model.str or callable. The
activation function to use on the model outputs. Set
activation="softmax" to return output probabilities.
Defaults to None.Examples
Raw string data.
features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]
# Pretrained classifier.
classifier = keras_nlp.models.FNetClassifier.from_preset(
"f_net_base_en",
num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)
# Re-compile (e.g., with a new learning rate).
classifier.compile(
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=keras.optimizers.Adam(5e-5),
jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)
Preprocessed integer data.
features = {
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
"segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
labels = [0, 3]
# Pretrained classifier without preprocessing.
classifier = keras_nlp.models.FNetClassifier.from_preset(
"f_net_base_en",
num_classes=4,
preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)
from_preset methodFNetClassifier.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_nlp.models.Task from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as a
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Task subclass, you can run cls.presets.keys() to list all
built-in presets available on the class.
This constructor can be called in one of two ways. Either from a task
specific base class like keras_nlp.models.CausalLM.from_preset(), or
from a model class like keras_nlp.models.BertClassifier.from_preset().
If calling from the a base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a Gemma generative task.
causal_lm = keras_nlp.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_nlp.models.Classifier.from_preset(
"bert_base_en",
num_classes=2,
)
| Preset name | Parameters | Description |
|---|---|---|
| f_net_base_en | 82.86M | 12-layer FNet model where case is maintained. Trained on the C4 dataset. |
| f_net_large_en | 236.95M | 24-layer FNet model where case is maintained. Trained on the C4 dataset. |
backbone propertykeras_nlp.models.FNetClassifier.backbone
A keras_nlp.models.Backbone model with the core architecture.
preprocessor propertykeras_nlp.models.FNetClassifier.preprocessor
A keras_nlp.models.Preprocessor layer used to preprocess input.