FalconTokenizer classkeras_nlp.models.FalconTokenizer(vocabulary=None, merges=None, **kwargs)
Falcon tokenizer based on BytePairTokenizer.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_nlp.tokenizers.BytePairTokenizer. Unlike the
underlying tokenizer, it will check for all special tokens needed by Falcon
models and provides a from_preset() method to automatically download
a matching vocabulary for a Falcon preset.
This tokenizer does not provide truncation or padding of inputs.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor with static shape [None].
Arguments
Examples
# Unbatched input.
tokenizer = keras_nlp.models.FalconTokenizer.from_preset("falcon_refinedweb_1b_en")
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
# Custom vocabulary.
vocab = {"<|endoftext|>": 0, "a": 4, "Ġquick": 5, "Ġfox": 6}
merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
merges += ["Ġ f", "o x", "Ġf ox"]
tokenizer = keras_nlp.models.FalconTokenizer(vocabulary=vocab, merges=merges)
tokenizer("a quick fox.")
from_preset methodFalconTokenizer.from_preset(preset, **kwargs)
Instantiate a keras_nlp.models.Tokenizer from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as a
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Tokenizer subclass, you can run cls.presets.keys() to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_nlp.models.Tokenizer.from_preset(), or from
a model class like keras_nlp.models.GemmaTokenizer.from_preset().
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True, the weights will be loaded into the
model architecture. If False, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_nlp.tokenizerTokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
| Preset name | Parameters | Description |
|---|---|---|
| falcon_refinedweb_1b_en | 1.31B | 24-layer Falcon model (Falcon with 1B parameters), trained on 350B tokens of RefinedWeb dataset. |