跳至内容

使用模式(响应评估)#

使用 BaseEvaluator#

LlamaIndex中的所有评估模块都实现了BaseEvaluator类,包含两个主要方法:

  1. evaluate 方法接收 querycontextsresponse 以及其他关键字参数。
    def evaluate(
        self,
        query: Optional[str] = None,
        contexts: Optional[Sequence[str]] = None,
        response: Optional[str] = None,
        **kwargs: Any,
    ) -> EvaluationResult:
  1. evaluate_response 方法提供了另一种接口,它接收一个 llamaindex Response 对象(包含响应字符串和源节点),而不是单独的 contextsresponse
def evaluate_response(
    self,
    query: Optional[str] = None,
    response: Optional[Response] = None,
    **kwargs: Any,
) -> EvaluationResult:

功能上与evaluate相同,只是在使用llamaindex对象时更简单。

使用 EvaluationResult#

每个评估器在执行时会输出一个EvaluationResult

eval_result = evaluator.evaluate(query=..., contexts=..., response=...)
eval_result.passing  # binary pass/fail
eval_result.score  # numerical score
eval_result.feedback  # string feedback

不同的评估器可能会填充结果字段的子集。

评估回答的忠实度(即幻觉问题)#

FaithfulnessEvaluator 用于评估答案是否忠实于检索到的上下文(换句话说,是否存在幻觉)。

from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import FaithfulnessEvaluator

# create llm
llm = OpenAI(model="gpt-4", temperature=0.0)

# build index
...

# define evaluator
evaluator = FaithfulnessEvaluator(llm=llm)

# query index
query_engine = vector_index.as_query_engine()
response = query_engine.query(
    "What battles took place in New York City in the American Revolution?"
)
eval_result = evaluator.evaluate_response(response=response)
print(str(eval_result.passing))

你也可以选择单独评估每个来源上下文:

from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import FaithfulnessEvaluator

# create llm
llm = OpenAI(model="gpt-4", temperature=0.0)

# build index
...

# define evaluator
evaluator = FaithfulnessEvaluator(llm=llm)

# query index
query_engine = vector_index.as_query_engine()
response = query_engine.query(
    "What battles took place in New York City in the American Revolution?"
)
response_str = response.response
for source_node in response.source_nodes:
    eval_result = evaluator.evaluate(
        response=response_str, contexts=[source_node.get_content()]
    )
    print(str(eval_result.passing))

您将获得一个结果列表,对应于response.source_nodes中的每个源节点。

评估查询与回答的相关性#

RelevancyEvaluator 用于评估检索到的上下文和答案是否与给定查询相关且一致。

请注意,除了Response对象外,该评估器还需要传入query

from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import RelevancyEvaluator

# create llm
llm = OpenAI(model="gpt-4", temperature=0.0)

# build index
...

# define evaluator
evaluator = RelevancyEvaluator(llm=llm)

# query index
query_engine = vector_index.as_query_engine()
query = "What battles took place in New York City in the American Revolution?"
response = query_engine.query(query)
eval_result = evaluator.evaluate_response(query=query, response=response)
print(str(eval_result))

同样地,您也可以针对特定的源节点进行评估。

from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import RelevancyEvaluator

# create llm
llm = OpenAI(model="gpt-4", temperature=0.0)

# build index
...

# define evaluator
evaluator = RelevancyEvaluator(llm=llm)

# query index
query_engine = vector_index.as_query_engine()
query = "What battles took place in New York City in the American Revolution?"
response = query_engine.query(query)
response_str = response.response
for source_node in response.source_nodes:
    eval_result = evaluator.evaluate(
        query=query,
        response=response_str,
        contexts=[source_node.get_content()],
    )
    print(str(eval_result.passing))

问题生成#

LlamaIndex 还可以生成问题来利用您的数据进行回答。与上述评估工具结合使用,您可以在数据上创建完全自动化的评估流程。

from llama_index.core import SimpleDirectoryReader
from llama_index.llms.openai import OpenAI
from llama_index.core.llama_dataset.generator import RagDatasetGenerator

# create llm
llm = OpenAI(model="gpt-4", temperature=0.0)

# build documents
documents = SimpleDirectoryReader("./data").load_data()

# define generator, generate questions
dataset_generator = RagDatasetGenerator.from_documents(
    documents=documents,
    llm=llm,
    num_questions_per_chunk=10,  # set the number of questions per nodes
)

rag_dataset = dataset_generator.generate_questions_from_nodes()
questions = [e.query for e in rag_dataset.examples]

批量评估#

我们还提供了一个批量评估运行器,用于针对多个问题运行一组评估器。

from llama_index.core.evaluation import BatchEvalRunner

runner = BatchEvalRunner(
    {"faithfulness": faithfulness_evaluator, "relevancy": relevancy_evaluator},
    workers=8,
)

eval_results = await runner.aevaluate_queries(
    vector_index.as_query_engine(), queries=questions
)

集成#

我们还集成了社区评估工具。

DeepEval#

DeepEval 提供6种评估器(包括3种RAG评估器,用于检索器和生成器评估),这些评估器由其专有的评估指标驱动。首先,安装 deepeval

pip install -U deepeval

然后你可以从deepeval导入并使用评估器。完整示例如下:

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from deepeval.integrations.llama_index import DeepEvalAnswerRelevancyEvaluator

documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data()
index = VectorStoreIndex.from_documents(documents)
rag_application = index.as_query_engine()

# An example input to your RAG application
user_input = "What is LlamaIndex?"

# LlamaIndex returns a response object that contains
# both the output string and retrieved nodes
response_object = rag_application.query(user_input)

evaluator = DeepEvalAnswerRelevancyEvaluator()
evaluation_result = evaluator.evaluate_response(
    query=user_input, response=response_object
)
print(evaluation_result)

以下是你可以从deepeval导入所有6个评估器的方法:

from deepeval.integrations.llama_index import (
    DeepEvalAnswerRelevancyEvaluator,
    DeepEvalFaithfulnessEvaluator,
    DeepEvalContextualRelevancyEvaluator,
    DeepEvalSummarizationEvaluator,
    DeepEvalBiasEvaluator,
    DeepEvalToxicityEvaluator,
)

要了解更多关于如何将deepeval的评估指标与LlamaIndex结合使用,并充分利用其完整的LLM测试套件,请访问文档

优云智算