LLaVA#
LMDeploy 支持以下 llava 系列模型,详细信息如下表所示:
模型 |
大小 |
支持的推理引擎 |
---|---|---|
llava-hf/Llava-interleave-qwen-7b-hf |
7B |
TurboMind, PyTorch |
llava-hf/llava-1.5-7b-hf |
7B |
TurboMind, PyTorch |
llava-hf/llava-v1.6-mistral-7b-hf |
7B |
PyTorch |
llava-hf/llava-v1.6-vicuna-7b-hf |
7B |
PyTorch |
liuhaotian/llava-v1.6-mistral-7b |
7B |
TurboMind |
liuhaotian/llava-v1.6-vicuna-7b |
7B |
TurboMind |
下一章将演示如何使用LMDeploy部署一个Llava模型,以llava-hf/llava-interleave为例。
注意
PyTorch引擎在v0.6.4之后移除了对原始llava模型的支持。请使用它们对应的transformers模型代替,可以在https://huggingface.co/llava-hf找到。
安装#
请按照安装指南安装LMDeploy。
或者,您可以使用官方的docker镜像:
docker pull openmmlab/lmdeploy:latest
离线推理#
以下示例代码展示了VLM管道的基本用法。有关详细信息,请参阅VLM离线推理管道
from lmdeploy import GenerationConfig, TurbomindEngineConfig, pipeline
from lmdeploy.vl import load_image
pipe = pipeline("llava-hf/llava-interleave-qwen-7b-hf", backend_config=TurbomindEngineConfig(cache_max_entry_count=0.5),
gen_config=GenerationConfig(max_new_tokens=512))
image = load_image('https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg')
prompt = 'Describe the image.'
print(f'prompt:{prompt}')
response = pipe((prompt, image))
print(response)
更多示例如下:
multi-image multi-round conversation, combined images
from lmdeploy import pipeline, GenerationConfig
pipe = pipeline('llava-hf/llava-interleave-qwen-7b-hf', log_level='INFO')
messages = [
dict(role='user', content=[
dict(type='text', text='Describe the two images in detail.'),
dict(type='image_url', image_url=dict(url='https://raw.githubusercontent.com/QwenLM/Qwen-VL/master/assets/mm_tutorial/Beijing_Small.jpeg')),
dict(type='image_url', image_url=dict(url='https://raw.githubusercontent.com/QwenLM/Qwen-VL/master/assets/mm_tutorial/Chongqing_Small.jpeg'))
])
]
out = pipe(messages, gen_config=GenerationConfig(top_k=1))
messages.append(dict(role='assistant', content=out.text))
messages.append(dict(role='user', content='What are the similarities and differences between these two images.'))
out = pipe(messages, gen_config=GenerationConfig(top_k=1))
在线服务#
你可以通过lmdeploy serve api_server
CLI启动服务器:
lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf
你也可以使用上述构建的docker镜像来启动服务:
docker run --runtime nvidia --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
-p 23333:23333 \
--ipc=host \
openmmlab/lmdeploy:latest \
lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf
Docker compose 是另一种选择。在 lmdeploy 项目的根目录下创建一个 docker-compose.yml
配置文件,如下所示:
version: '3.5'
services:
lmdeploy:
container_name: lmdeploy
image: openmmlab/lmdeploy:latest
ports:
- "23333:23333"
environment:
HUGGING_FACE_HUB_TOKEN: <secret>
volumes:
- ~/.cache/huggingface:/root/.cache/huggingface
stdin_open: true
tty: true
ipc: host
command: lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: "all"
capabilities: [gpu]
然后,您可以执行如下启动命令:
docker-compose up -d
如果你在运行docker logs -f lmdeploy
后看到以下日志,这意味着服务已成功启动。
HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!!
HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!!
HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!!
INFO: Started server process [2439]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:23333 (Press CTRL+C to quit)
lmdeploy serve api_server
的参数可以通过 lmdeploy serve api_server -h
详细查看。
有关api_server
的更多信息以及如何访问该服务,可以从这里找到