"""
Various transforms used for by the 3D code
"""
import numpy as np
from matplotlib import _api
def _rotation_about_vector(v, angle):
"""
Produce a rotation matrix for an angle in radians about a vector.
"""
vx, vy, vz = v / np.linalg.norm(v)
s = np.sin(angle)
c = np.cos(angle)
t = 2*np.sin(angle/2)**2 # more numerically stable than t = 1-c
R = np.array([
[t*vx*vx + c, t*vx*vy - vz*s, t*vx*vz + vy*s],
[t*vy*vx + vz*s, t*vy*vy + c, t*vy*vz - vx*s],
[t*vz*vx - vy*s, t*vz*vy + vx*s, t*vz*vz + c]])
return R
def _view_axes(E, R, V, roll):
"""
Get the unit viewing axes in data coordinates.
Parameters
----------
E : 3-element numpy array
The coordinates of the eye/camera.
R : 3-element numpy array
The coordinates of the center of the view box.
V : 3-element numpy array
Unit vector in the direction of the vertical axis.
roll : float
The roll angle in radians.
Returns
-------
u : 3-element numpy array
Unit vector pointing towards the right of the screen.
v : 3-element numpy array
Unit vector pointing towards the top of the screen.
w : 3-element numpy array
Unit vector pointing out of the screen.
"""
w = (E - R)
w = w/np.linalg.norm(w)
u = np.cross(V, w)
u = u/np.linalg.norm(u)
v = np.cross(w, u) # Will be a unit vector
# Save some computation for the default roll=0
if roll != 0:
# A positive rotation of the camera is a negative rotation of the world
Rroll = _rotation_about_vector(w, -roll)
u = np.dot(Rroll, u)
v = np.dot(Rroll, v)
return u, v, w
def _view_transformation_uvw(u, v, w, E):
"""
Return the view transformation matrix.
Parameters
----------
u : 3-element numpy array
Unit vector pointing towards the right of the screen.
v : 3-element numpy array
Unit vector pointing towards the top of the screen.
w : 3-element numpy array
Unit vector pointing out of the screen.
E : 3-element numpy array
The coordinates of the eye/camera.
"""
Mr = np.eye(4)
Mt = np.eye(4)
Mr[:3, :3] = [u, v, w]
Mt[:3, -1] = -E
M = np.dot(Mr, Mt)
return M
def _persp_transformation(zfront, zback, focal_length):
e = focal_length
a = 1 # aspect ratio
b = (zfront+zback)/(zfront-zback)
c = -2*(zfront*zback)/(zfront-zback)
proj_matrix = np.array([[e, 0, 0, 0],
[0, e/a, 0, 0],
[0, 0, b, c],
[0, 0, -1, 0]])
return proj_matrix
def _ortho_transformation(zfront, zback):
# note: w component in the resulting vector will be (zback-zfront), not 1
a = -(zfront + zback)
b = -(zfront - zback)
proj_matrix = np.array([[2, 0, 0, 0],
[0, 2, 0, 0],
[0, 0, -2, 0],
[0, 0, a, b]])
return proj_matrix
def _proj_transform_vec(vec, M):
vecw = np.dot(M, vec)
w = vecw[3]
txs, tys, tzs = vecw[0]/w, vecw[1]/w, vecw[2]/w
return txs, tys, tzs
def _proj_transform_vec_clip(vec, M, focal_length):
vecw = np.dot(M, vec)
w = vecw[3]
txs, tys, tzs = vecw[0] / w, vecw[1] / w, vecw[2] / w
if np.isinf(focal_length): # don't clip orthographic projection
tis = np.ones(txs.shape, dtype=bool)
else:
tis = (-1 <= txs) & (txs <= 1) & (-1 <= tys) & (tys <= 1) & (tzs <= 0)
txs = np.ma.masked_array(txs, ~tis)
tys = np.ma.masked_array(tys, ~tis)
tzs = np.ma.masked_array(tzs, ~tis)
return txs, tys, tzs, tis
def _vec_pad_ones(xs, ys, zs):
return np.array([xs, ys, zs, np.ones_like(xs)])
def _proj_transform_clip(xs, ys, zs, M, focal_length):
"""
Transform the points by the projection matrix
and return the clipping result
returns txs, tys, tzs, tis
"""
vec = _vec_pad_ones(xs, ys, zs)
return _proj_transform_vec_clip(vec, M, focal_length)
def _proj_points(points, M):
return np.column_stack(_proj_trans_points(points, M))
def _proj_trans_points(points, M):
xs, ys, zs = zip(*points)
return proj_transform(xs, ys, zs, M)