Source code for networkx.algorithms.graphical

"""测试图形的序列。"""

import heapq

import networkx as nx

__all__ = [
    "is_graphical",
    "is_multigraphical",
    "is_pseudographical",
    "is_digraphical",
    "is_valid_degree_sequence_erdos_gallai",
    "is_valid_degree_sequence_havel_hakimi",
]


[docs] @nx._dispatchable(graphs=None) def is_graphical(sequence, method="eg"): """如果序列是一个有效的度序列,则返回 True。 度序列是有效的,如果某些图可以实现它。 Parameters ---------- sequence : 列表或可迭代容器 一个整数节点度的序列 method : "eg" | "hh" (默认:'eg') 用于验证度序列的方法。 "eg" 对应于 Erdős-Gallai 算法 [EG1960]_, [choudum1986]_,以及 "hh" 对应于 Havel-Hakimi 算法 [havel1955]_, [hakimi1962]_, [CL1996]_。 Returns ------- valid : bool 如果序列是有效的度序列,则为 True,否则为 False。 Examples -------- >>> G = nx.path_graph(4) >>> sequence = (d for n, d in G.degree()) >>> nx.is_graphical(sequence) True 测试一个非图形序列: >>> sequence_list = [d for n, d in G.degree()] >>> sequence_list[-1] += 1 >>> nx.is_graphical(sequence_list) False References ---------- .. [EG1960] Erdős 和 Gallai, Mat. Lapok 11 264, 1960. .. [choudum1986] S.A. Choudum. "A simple proof of the Erdős-Gallai theorem on graph sequences." Bulletin of the Australian Mathematical Society, 33, pp 67-70, 1986. https://doi.org/10.1017/S0004972700002872 .. [havel1955] Havel, V. "A Remark on the Existence of Finite Graphs" Casopis Pest. Mat. 80, 477-480, 1955. .. [hakimi1962] Hakimi, S. "On the Realizability of a Set of Integers as Degrees of the Vertices of a Graph." SIAM J. Appl. Math. 10, 496-506, 1962. .. [CL1996] G. Chartrand 和 L. Lesniak, "Graphs and Digraphs", Chapman and Hall/CRC, 1996. """ if method == "eg": valid = is_valid_degree_sequence_erdos_gallai(list(sequence)) elif method == "hh": valid = is_valid_degree_sequence_havel_hakimi(list(sequence)) else: msg = "`method` must be 'eg' or 'hh'" raise nx.NetworkXException(msg) return valid
def _basic_graphical_tests(deg_sequence): # Sort and perform some simple tests on the sequence deg_sequence = nx.utils.make_list_of_ints(deg_sequence) p = len(deg_sequence) num_degs = [0] * p dmax, dmin, dsum, n = 0, p, 0, 0 for d in deg_sequence: # Reject if degree is negative or larger than the sequence length if d < 0 or d >= p: raise nx.NetworkXUnfeasible # Process only the non-zero integers elif d > 0: dmax, dmin, dsum, n = max(dmax, d), min(dmin, d), dsum + d, n + 1 num_degs[d] += 1 # Reject sequence if it has odd sum or is oversaturated if dsum % 2 or dsum > n * (n - 1): raise nx.NetworkXUnfeasible return dmax, dmin, dsum, n, num_degs
[docs] @nx._dispatchable(graphs=None) def is_valid_degree_sequence_havel_hakimi(deg_sequence): r"""如果度序列可以通过简单图实现,则返回 True。 验证过程使用 Havel-Hakimi 定理 [havel1955]_, [hakimi1962]_, [CL1996]_。 最坏情况下的运行时间是 $O(s)$,其中 $s$ 是序列的和。 Parameters ---------- deg_sequence : list 一个整数列表,每个元素指定图中一个节点的度数。 Returns ------- valid : bool 如果 deg_sequence 是图形的,则返回 True,否则返回 False。 Examples -------- >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)]) >>> sequence = (d for _, d in G.degree()) >>> nx.is_valid_degree_sequence_havel_hakimi(sequence) True 测试一个非有效序列: >>> sequence_list = [d for _, d in G.degree()] >>> sequence_list[-1] += 1 >>> nx.is_valid_degree_sequence_havel_hakimi(sequence_list) False Notes ----- ZZ 条件指出,对于序列 d,如果 .. math:: |d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)} 则 d 是图形的。这在 [1]_ 中的定理 6 中被证明。 References ---------- .. [1] I.E. Zverovich 和 V.E. Zverovich。"对图形序列理论的贡献",离散数学,105,第 292-303 页(1992)。 .. [havel1955] Havel, V. "关于有限图存在性的一个注记",Casopis Pest. Mat. 80,第 477-480 页,1955。 .. [hakimi1962] Hakimi, S. "关于将一组整数实现为图的顶点度数的可行性",SIAM J. Appl. Math. 10,第 496-506 页,1962。 .. [CL1996] G. Chartrand 和 L. Lesniak,"图和有向图",Chapman and Hall/CRC,1996。 """ try: dmax, dmin, dsum, n, num_degs = _basic_graphical_tests(deg_sequence) except nx.NetworkXUnfeasible: return False # Accept if sequence has no non-zero degrees or passes the ZZ condition if n == 0 or 4 * dmin * n >= (dmax + dmin + 1) * (dmax + dmin + 1): return True modstubs = [0] * (dmax + 1) # Successively reduce degree sequence by removing the maximum degree while n > 0: # Retrieve the maximum degree in the sequence while num_degs[dmax] == 0: dmax -= 1 # If there are not enough stubs to connect to, then the sequence is # not graphical if dmax > n - 1: return False # Remove largest stub in list num_degs[dmax], n = num_degs[dmax] - 1, n - 1 # Reduce the next dmax largest stubs mslen = 0 k = dmax for i in range(dmax): while num_degs[k] == 0: k -= 1 num_degs[k], n = num_degs[k] - 1, n - 1 if k > 1: modstubs[mslen] = k - 1 mslen += 1 # Add back to the list any non-zero stubs that were removed for i in range(mslen): stub = modstubs[i] num_degs[stub], n = num_degs[stub] + 1, n + 1 return True
[docs] @nx._dispatchable(graphs=None) def is_valid_degree_sequence_erdos_gallai(deg_sequence): r"""如果度序列可以通过简单图实现,则返回 True。 验证使用的是 Erdős-Gallai 定理 [EG1960]。 Parameters ---------- deg_sequence : 列表 一个整数列表 Returns ------- valid : 布尔值 如果 deg_sequence 是图形的则返回 True,否则返回 False。 Examples -------- >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)]) >>> sequence = (d for _, d in G.degree()) >>> nx.is_valid_degree_sequence_erdos_gallai(sequence) True 测试一个非有效的序列: >>> sequence_list = [d for _, d in G.degree()] >>> sequence_list[-1] += 1 >>> nx.is_valid_degree_sequence_erdos_gallai(sequence_list) False Notes ----- 此实现使用了 Erdős-Gallai 准则的等价形式。 最坏情况下的运行时间是 $O(n)$,其中 $n$ 是序列的长度。 具体来说,序列 d 是图形的当且仅当序列的和是偶数,并且对于序列中的所有强索引 k, .. math:: \sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{j=k+1}^{n} \min(d_i,k) = k(n-1) - ( k \sum_{j=0}^{k-1} n_j - \sum_{j=0}^{k-1} j n_j ) 强索引 k 是任何满足 d_k >= k 的索引,值 n_j 是 j 在 d 中的出现次数。最大强索引称为 Durfee 索引。 这种特定的重排来自 [2]_ 中定理 3 的证明。 ZZ 条件表示,对于序列 d,如果 .. math:: |d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)} 则 d 是图形的。这在 [2]_ 中的定理 6 中被证明。 References ---------- .. [1] A. Tripathi 和 S. Vijay. "A note on a theorem of Erdős & Gallai", Discrete Mathematics, 265, pp. 417-420 (2003). .. [2] I.E. Zverovich 和 V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992). .. [EG1960] Erdős 和 Gallai, Mat. Lapok 11 264, 1960. """ try: dmax, dmin, dsum, n, num_degs = _basic_graphical_tests(deg_sequence) except nx.NetworkXUnfeasible: return False # Accept if sequence has no non-zero degrees or passes the ZZ condition if n == 0 or 4 * dmin * n >= (dmax + dmin + 1) * (dmax + dmin + 1): return True # Perform the EG checks using the reformulation of Zverovich and Zverovich k, sum_deg, sum_nj, sum_jnj = 0, 0, 0, 0 for dk in range(dmax, dmin - 1, -1): if dk < k + 1: # Check if already past Durfee index return True if num_degs[dk] > 0: run_size = num_degs[dk] # Process a run of identical-valued degrees if dk < k + run_size: # Check if end of run is past Durfee index run_size = dk - k # Adjust back to Durfee index sum_deg += run_size * dk for v in range(run_size): sum_nj += num_degs[k + v] sum_jnj += (k + v) * num_degs[k + v] k += run_size if sum_deg > k * (n - 1) - k * sum_nj + sum_jnj: return False return True
[docs] @nx._dispatchable(graphs=None) def is_multigraphical(sequence): """如果某个多重图可以实现该序列,则返回 True。 Parameters ---------- sequence : list 一个整数列表 Returns ------- valid : bool 如果 deg_sequence 是一个多重图度序列,则返回 True,否则返回 False。 Examples -------- >>> G = nx.MultiGraph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)]) >>> sequence = (d for _, d in G.degree()) >>> nx.is_multigraphical(sequence) True 测试一个非多重图序列: >>> sequence_list = [d for _, d in G.degree()] >>> sequence_list[-1] += 1 >>> nx.is_multigraphical(sequence_list) False Notes ----- 最坏情况下的运行时间是 $O(n)$,其中 $n$ 是序列的长度。 References ---------- .. [1] S. L. Hakimi. "关于将一组整数作为线性图顶点的度数实现的问题", J. SIAM, 10, 第 496-506 页 (1962). """ try: deg_sequence = nx.utils.make_list_of_ints(sequence) except nx.NetworkXError: return False dsum, dmax = 0, 0 for d in deg_sequence: if d < 0: return False dsum, dmax = dsum + d, max(dmax, d) if dsum % 2 or dsum < 2 * dmax: return False return True
[docs] @nx._dispatchable(graphs=None) def is_pseudographical(sequence): """如果某个伪图可以实现该序列,则返回 True。 每个和为偶数的非负整数序列都是伪图的(参见 [1])。 Parameters ---------- sequence : 列表或可迭代容器 一个整数节点度序列 Returns ------- valid : bool 如果序列是伪图的度序列,则返回 True,否则返回 False。 Examples -------- >>> G = nx.Graph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)]) >>> sequence = (d for _, d in G.degree()) >>> nx.is_pseudographical(sequence) True 测试一个非伪图序列: >>> sequence_list = [d for _, d in G.degree()] >>> sequence_list[-1] += 1 >>> nx.is_pseudographical(sequence_list) False Notes ----- 最坏情况下的运行时间是 $O(n)$,其中 n 是序列的长度。 References ---------- .. [1] F. Boesch 和 F. Harary。"图及其度列表的线移除算法",IEEE 电路与系统汇刊,CAS-23(12), 第 778-782 页(1976 年)。 """ try: deg_sequence = nx.utils.make_list_of_ints(sequence) except nx.NetworkXError: return False return sum(deg_sequence) % 2 == 0 and min(deg_sequence) >= 0
[docs] @nx._dispatchable(graphs=None) def is_digraphical(in_sequence, out_sequence): r"""如果某个有向图可以实现给定的入度和出度序列,则返回 True。 Parameters ---------- in_sequence : 列表或可迭代容器 一个整数节点入度序列 out_sequence : 列表或可迭代容器 一个整数节点出度序列 Returns ------- valid : bool 如果入度和出度序列是可图的,则返回 True,否则返回 False。 Examples -------- >>> G = nx.DiGraph([(1, 2), (1, 3), (2, 3), (3, 4), (4, 2), (5, 1), (5, 4)]) >>> in_seq = (d for n, d in G.in_degree()) >>> out_seq = (d for n, d in G.out_degree()) >>> nx.is_digraphical(in_seq, out_seq) True 测试一个非可图场景: >>> in_seq_list = [d for n, d in G.in_degree()] >>> in_seq_list[-1] += 1 >>> nx.is_digraphical(in_seq_list, out_seq) False Notes ----- 该算法来自 Kleitman 和 Wang [1]。 最坏情况下的运行时间是 $O(s \times \log n)$,其中 $s$ 和 $n$ 分别是序列的和与长度。 References ---------- .. [1] D.J. Kleitman 和 D.L. Wang 构造具有给定价和因子的图和有向图的算法,离散数学,6(1),第79-88页 (1973) """ try: in_deg_sequence = nx.utils.make_list_of_ints(in_sequence) out_deg_sequence = nx.utils.make_list_of_ints(out_sequence) except nx.NetworkXError: return False # Process the sequences and form two heaps to store degree pairs with # either zero or non-zero out degrees sumin, sumout, nin, nout = 0, 0, len(in_deg_sequence), len(out_deg_sequence) maxn = max(nin, nout) maxin = 0 if maxn == 0: return True stubheap, zeroheap = [], [] for n in range(maxn): in_deg, out_deg = 0, 0 if n < nout: out_deg = out_deg_sequence[n] if n < nin: in_deg = in_deg_sequence[n] if in_deg < 0 or out_deg < 0: return False sumin, sumout, maxin = sumin + in_deg, sumout + out_deg, max(maxin, in_deg) if in_deg > 0: stubheap.append((-1 * out_deg, -1 * in_deg)) elif out_deg > 0: zeroheap.append(-1 * out_deg) if sumin != sumout: return False heapq.heapify(stubheap) heapq.heapify(zeroheap) modstubs = [(0, 0)] * (maxin + 1) # Successively reduce degree sequence by removing the maximum out degree while stubheap: # Take the first value in the sequence with non-zero in degree (freeout, freein) = heapq.heappop(stubheap) freein *= -1 if freein > len(stubheap) + len(zeroheap): return False # Attach out stubs to the nodes with the most in stubs mslen = 0 for i in range(freein): if zeroheap and (not stubheap or stubheap[0][0] > zeroheap[0]): stubout = heapq.heappop(zeroheap) stubin = 0 else: (stubout, stubin) = heapq.heappop(stubheap) if stubout == 0: return False # Check if target is now totally connected if stubout + 1 < 0 or stubin < 0: modstubs[mslen] = (stubout + 1, stubin) mslen += 1 # Add back the nodes to the heap that still have available stubs for i in range(mslen): stub = modstubs[i] if stub[1] < 0: heapq.heappush(stubheap, stub) else: heapq.heappush(zeroheap, stub[0]) if freeout < 0: heapq.heappush(zeroheap, freeout) return True