local_and_global_consistency#
- local_and_global_consistency(G, alpha=0.99, max_iter=30, label_name='label')[source]#
节点分类通过局部和全局一致性
用于计算Zhou等人提出的局部和全局一致性算法的函数。
- Parameters:
- GNetworkX 图
- alpha浮点数
阻尼因子
- max_iter整数
允许的最大迭代次数
- label_name字符串
目标标签的名称,用于预测
- Returns:
- predicted列表
长度为
len(G)的列表,包含每个节点的预测标签。
- Raises:
- NetworkXError
如果
G中没有节点具有属性label_name。
References
Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004). Learning with local and global consistency. Advances in neural information processing systems, 16(16), 321-328.
Examples
>>> from networkx.algorithms import node_classification >>> G = nx.path_graph(4) >>> G.nodes[0]["label"] = "A" >>> G.nodes[3]["label"] = "B" >>> G.nodes(data=True) NodeDataView({0: {'label': 'A'}, 1: {}, 2: {}, 3: {'label': 'B'}}) >>> G.edges() EdgeView([(0, 1), (1, 2), (2, 3)]) >>> predicted = node_classification.local_and_global_consistency(G) >>> predicted ['A', 'A', 'B', 'B']