通知者

Informer模型解决了传统Transformer在长时间预测中的计算复杂性挑战。

该架构有三个显著特点: - 一个ProbSparse自注意力机制,其时间和内存复杂度为O(Llog(L))。 - 一种自注意力蒸馏过程,优先考虑注意力并高效处理长输入序列。 - 一个MLP多步解码器,在一次前向操作中预测长时间序列,而不是一步步预测。

Informer模型利用三部分的方法定义其嵌入: - 它采用来自卷积网络的编码自回归特征。 - 它使用从谐波函数派生的窗口相对位置嵌入。 - 利用从日历特征获得的绝对位置嵌入。

参考文献
- Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, Wancai Zhang. “Informer: 超越高效Transformer的长序列时间序列预测”

图 1. 时间融合变换器架构。
import math
import numpy as np
from typing import Optional

import torch
import torch.nn as nn

from neuralforecast.common._modules import (
    TransEncoderLayer, TransEncoder,
    TransDecoderLayer, TransDecoder,
    DataEmbedding, AttentionLayer,
)
from neuralforecast.common._base_windows import BaseWindows

from neuralforecast.losses.pytorch import MAE
from fastcore.test import test_eq
from nbdev.showdoc import show_doc

1. 辅助函数

class 卷积层(nn.Module):
    """
    卷积层
    """
    def __init__(self, c_in):
        super(卷积层, self).__init__()
        self.downConv = nn.Conv1d(in_channels=c_in,
                                  out_channels=c_in,
                                  kernel_size=3,
                                  padding=2,
                                  padding_mode='circular')
        self.norm = nn.BatchNorm1d(c_in)
        self.activation = nn.ELU()
        self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)

    def forward(self, x):
        x = self.downConv(x.permute(0, 2, 1))
        x = self.norm(x)
        x = self.activation(x)
        x = self.maxPool(x)
        x = x.transpose(1, 2)
        return x
class ProbMask():
    """
    ProbMask
    """    
    def __init__(self, B, H, L, index, scores, device="cpu"):
        _mask = torch.ones(L, scores.shape[-1], dtype=torch.bool, device=device).triu(1)
        _mask_ex = _mask[None, None, :].expand(B, H, L, scores.shape[-1])
        indicator = _mask_ex[torch.arange(B)[:, None, None],
                    torch.arange(H)[None, :, None],
                    index, :].to(device)
        self._mask = indicator.view(scores.shape).to(device)

    @property
    def mask(self):
        return self._mask


class ProbAttention(nn.Module):
    """
    ProbAttention
    """      
    def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
        super(ProbAttention, self).__init__()
        self.factor = factor
        self.scale = scale
        self.mask_flag = mask_flag
        self.output_attention = output_attention
        self.dropout = nn.Dropout(attention_dropout)

    def _prob_QK(self, Q, K, sample_k, n_top):  # n_top: c*ln(L_q)
        # Q [B, H, L, D]
        B, H, L_K, E = K.shape
        _, _, L_Q, _ = Q.shape

        # 计算采样后的Q_K
        K_expand = K.unsqueeze(-3).expand(B, H, L_Q, L_K, E)

        index_sample = torch.randint(L_K, (L_Q, sample_k))  # 实际U = U_部分(因子*ln(L_k))*L_q
        K_sample = K_expand[:, :, torch.arange(L_Q).unsqueeze(1), index_sample, :]
        Q_K_sample = torch.matmul(Q.unsqueeze(-2), K_sample.transpose(-2, -1)).squeeze()

        # 找到具有稀疏性度量的Top_k查询
        M = Q_K_sample.max(-1)[0] - torch.div(Q_K_sample.sum(-1), L_K)
        M_top = M.topk(n_top, sorted=False)[1]

        # 使用简化的Q来计算Q_K
        Q_reduce = Q[torch.arange(B)[:, None, None],
                   torch.arange(H)[None, :, None],
                   M_top, :]  # 因子*ln(L_q)
        Q_K = torch.matmul(Q_reduce, K.transpose(-2, -1))  # 因子*ln(L_q)*L_k

        return Q_K, M_top

    def _get_initial_context(self, V, L_Q):
        B, H, L_V, D = V.shape
        if not self.mask_flag:
            # V_sum = V.在倒数第二维度上求和()
            V_sum = V.mean(dim=-2)
            contex = V_sum.unsqueeze(-2).expand(B, H, L_Q, V_sum.shape[-1]).clone()
        else:  # 戴口罩
            assert (L_Q == L_V)  # 要求L_Q == L_V,即仅限于自注意力机制。
            contex = V.cumsum(dim=-2)
        return contex

    def _update_context(self, context_in, V, scores, index, L_Q, attn_mask):
        B, H, L_V, D = V.shape

        if self.mask_flag:
            attn_mask = ProbMask(B, H, L_Q, index, scores, device=V.device)
            scores.masked_fill_(attn_mask.mask, -np.inf)

        attn = torch.softmax(scores, dim=-1)  # nn.Softmax(dim=-1)(scores)

        context_in[torch.arange(B)[:, None, None],
        torch.arange(H)[None, :, None],
        index, :] = torch.matmul(attn, V).type_as(context_in)
        if self.output_attention:
            attns = (torch.ones([B, H, L_V, L_V], device=attn.device) / L_V).type_as(attn)
            attns[torch.arange(B)[:, None, None], torch.arange(H)[None, :, None], index, :] = attn
            return (context_in, attns)
        else:
            return (context_in, None)

    def forward(self, queries, keys, values, attn_mask):
        B, L_Q, H, D = queries.shape
        _, L_K, _, _ = keys.shape

        queries = queries.transpose(2, 1)
        keys = keys.transpose(2, 1)
        values = values.transpose(2, 1)

        U_part = self.factor * np.ceil(np.log(L_K)).astype('int').item()  # c*ln(L_k)
        u = self.factor * np.ceil(np.log(L_Q)).astype('int').item()  # c*ln(L_q)

        U_part = U_part if U_part < L_K else L_K
        u = u if u < L_Q else L_Q

        scores_top, index = self._prob_QK(queries, keys, sample_k=U_part, n_top=u)

        # 添加比例因子
        scale = self.scale or 1. / math.sqrt(D)
        if scale is not None:
            scores_top = scores_top * scale
        # 获取上下文
        context = self._get_initial_context(values, L_Q)
        # 使用选定的top_k查询更新上下文
        context, attn = self._update_context(context, values, scores_top, index, L_Q, attn_mask)

        return context.contiguous(), attn

2. 信息员

class Informer(BaseWindows):
    """ Informer

    The Informer model tackles the vanilla Transformer computational complexity challenges for long-horizon forecasting. 
    The architecture has three distinctive features:
        1) A ProbSparse self-attention mechanism with an O time and memory complexity Llog(L).
        2) A self-attention distilling process that prioritizes attention and efficiently handles long input sequences.
        3) An MLP multi-step decoder that predicts long time-series sequences in a single forward operation rather than step-by-step.

    The Informer model utilizes a three-component approach to define its embedding:
        1) It employs encoded autoregressive features obtained from a convolution network.
        2) It uses window-relative positional embeddings derived from harmonic functions.
        3) Absolute positional embeddings obtained from calendar features are utilized.

    *Parameters:*<br>
    `h`: int, forecast horizon.<br>
    `input_size`: int, maximum sequence length for truncated train backpropagation. Default -1 uses all history.<br>
    `futr_exog_list`: str list, future exogenous columns.<br>
    `hist_exog_list`: str list, historic exogenous columns.<br>
    `stat_exog_list`: str list, static exogenous columns.<br>
    `exclude_insample_y`: bool=False, the model skips the autoregressive features y[t-input_size:t] if True.<br>
    `decoder_input_size_multiplier`: float = 0.5, .<br>
    `hidden_size`: int=128, units of embeddings and encoders.<br>
    `n_head`: int=4, controls number of multi-head's attention.<br>
    `dropout`: float (0, 1), dropout throughout Informer architecture.<br>
    `factor`: int=3, Probsparse attention factor.<br>
    `conv_hidden_size`: int=32, channels of the convolutional encoder.<br>
    `activation`: str=`GELU`, activation from ['ReLU', 'Softplus', 'Tanh', 'SELU', 'LeakyReLU', 'PReLU', 'Sigmoid', 'GELU'].<br>
    `encoder_layers`: int=2, number of layers for the TCN encoder.<br>
    `decoder_layers`: int=1, number of layers for the MLP decoder.<br>
    `distil`: bool = True, wether the Informer decoder uses bottlenecks.<br>
    `loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>
    `max_steps`: int=1000, maximum number of training steps.<br>
    `learning_rate`: float=1e-3, Learning rate between (0, 1).<br>
    `num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.<br>
    `early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.<br>
    `val_check_steps`: int=100, Number of training steps between every validation loss check.<br>
    `batch_size`: int=32, number of different series in each batch.<br>
    `valid_batch_size`: int=None, number of different series in each validation and test batch, if None uses batch_size.<br>
    `windows_batch_size`: int=1024, number of windows to sample in each training batch, default uses all.<br>
    `inference_windows_batch_size`: int=1024, number of windows to sample in each inference batch.<br>
    `start_padding_enabled`: bool=False, if True, the model will pad the time series with zeros at the beginning, by input size.<br>
    `scaler_type`: str='robust', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).<br>
    `random_seed`: int=1, random_seed for pytorch initializer and numpy generators.<br>
    `num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.<br>
    `drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.<br>
    `alias`: str, optional,  Custom name of the model.<br>
    `optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).<br>
    `optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.<br>
    `lr_scheduler`: Subclass of 'torch.optim.lr_scheduler.LRScheduler', optional, user specified lr_scheduler instead of the default choice (StepLR).<br>
    `lr_scheduler_kwargs`: dict, optional, list of parameters used by the user specified `lr_scheduler`.<br>
    `**trainer_kwargs`: int,  keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).<br>

    *References*<br>
    - [Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, Wancai Zhang. "Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting"](https://arxiv.org/abs/2012.07436)<br>
    """
    # 类属性
    SAMPLING_TYPE = 'windows'
    EXOGENOUS_FUTR = True
    EXOGENOUS_HIST = False
    EXOGENOUS_STAT = False

    def __init__(self,
                 h: int, 
                 input_size: int,
                 stat_exog_list = None,
                 hist_exog_list = None,
                 futr_exog_list = None,
                 exclude_insample_y = False,
                 decoder_input_size_multiplier: float = 0.5,
                 hidden_size: int = 128, 
                 dropout: float = 0.05,
                 factor: int = 3,
                 n_head: int = 4,
                 conv_hidden_size: int = 32,
                 activation: str = 'gelu',
                 encoder_layers: int = 2, 
                 decoder_layers: int = 1, 
                 distil: bool = True,
                 loss = MAE(),
                 valid_loss = None,
                 max_steps: int = 5000,
                 learning_rate: float = 1e-4,
                 num_lr_decays: int = -1,
                 early_stop_patience_steps: int =-1,
                 val_check_steps: int = 100,
                 batch_size: int = 32,
                 valid_batch_size: Optional[int] = None,
                 windows_batch_size = 1024,
                 inference_windows_batch_size = 1024,
                 start_padding_enabled = False,
                 step_size: int = 1,
                 scaler_type: str = 'identity',
                 random_seed: int = 1,
                 num_workers_loader: int = 0,
                 drop_last_loader: bool = False,
                 optimizer = None,
                 optimizer_kwargs = None,
                 lr_scheduler = None,
                 lr_scheduler_kwargs = None,
                 **trainer_kwargs):
        super(Informer, self).__init__(h=h,
                                       input_size=input_size,
                                       hist_exog_list=hist_exog_list,
                                       stat_exog_list=stat_exog_list,
                                       futr_exog_list = futr_exog_list,
                                       exclude_insample_y = exclude_insample_y,
                                       loss=loss,
                                       valid_loss=valid_loss,
                                       max_steps=max_steps,
                                       learning_rate=learning_rate,
                                       num_lr_decays=num_lr_decays,
                                       early_stop_patience_steps=early_stop_patience_steps,
                                       val_check_steps=val_check_steps,
                                       batch_size=batch_size,
                                       valid_batch_size=valid_batch_size,
                                       windows_batch_size=windows_batch_size,
                                       inference_windows_batch_size = inference_windows_batch_size,
                                       start_padding_enabled=start_padding_enabled,
                                       step_size=step_size,
                                       scaler_type=scaler_type,
                                       num_workers_loader=num_workers_loader,
                                       drop_last_loader=drop_last_loader,
                                       random_seed=random_seed,
                                       optimizer=optimizer,
                                       optimizer_kwargs=optimizer_kwargs,
                                       lr_scheduler=lr_scheduler,
                                       lr_scheduler_kwargs=lr_scheduler_kwargs,
                                       **trainer_kwargs)

        # 建筑学
        self.label_len = int(np.ceil(input_size * decoder_input_size_multiplier))
        if (self.label_len >= input_size) or (self.label_len <= 0):
            raise Exception(f'Check decoder_input_size_multiplier={decoder_input_size_multiplier}, range (0,1)')

        if activation not in ['relu', 'gelu']:
            raise Exception(f'Check activation={activation}')
        
        self.c_out = self.loss.outputsize_multiplier
        self.output_attention = False
        self.enc_in = 1 
        self.dec_in = 1

        # 嵌入
        self.enc_embedding = DataEmbedding(c_in=self.enc_in,
                                           exog_input_size=self.futr_exog_size,
                                           hidden_size=hidden_size, 
                                           pos_embedding=True,
                                           dropout=dropout)
        self.dec_embedding = DataEmbedding(self.dec_in,
                                           exog_input_size=self.futr_exog_size,
                                           hidden_size=hidden_size, 
                                           pos_embedding=True,
                                           dropout=dropout)

        # 编码器
        self.encoder = TransEncoder(
            [
                TransEncoderLayer(
                    AttentionLayer(
                        ProbAttention(False, factor,
                                      attention_dropout=dropout,
                                      output_attention=self.output_attention),
                        hidden_size, n_head),
                    hidden_size,
                    conv_hidden_size,
                    dropout=dropout,
                    activation=activation
                ) for l in range(encoder_layers)
            ],
            [
                ConvLayer(
                    hidden_size
                ) for l in range(encoder_layers - 1)
            ] if distil else None,
            norm_layer=torch.nn.LayerNorm(hidden_size)
        )
        # 解码器
        self.decoder = TransDecoder(
            [
                TransDecoderLayer(
                    AttentionLayer(
                        ProbAttention(True, factor, attention_dropout=dropout, output_attention=False),
                        hidden_size, n_head),
                    AttentionLayer(
                        ProbAttention(False, factor, attention_dropout=dropout, output_attention=False),
                        hidden_size, n_head),
                    hidden_size,
                    conv_hidden_size,
                    dropout=dropout,
                    activation=activation,
                )
                for l in range(decoder_layers)
            ],
            norm_layer=torch.nn.LayerNorm(hidden_size),
            projection=nn.Linear(hidden_size, self.c_out, bias=True)
        )

    def forward(self, windows_batch):
        # 解析Windows批处理文件
        insample_y    = windows_batch['insample_y']
        #insample_mask = windows_batch['insample_mask']
        #hist_exog     = windows_batch['hist_exog']
        #stat_exog     = windows_batch['stat_exog']

        futr_exog     = windows_batch['futr_exog']

        insample_y = insample_y.unsqueeze(-1) # [Ws,L,1]

        if self.futr_exog_size > 0:
            x_mark_enc = futr_exog[:,:self.input_size,:]
            x_mark_dec = futr_exog[:,-(self.label_len+self.h):,:]
        else:
            x_mark_enc = None
            x_mark_dec = None

        x_dec = torch.zeros(size=(len(insample_y),self.h,1), device=insample_y.device)
        x_dec = torch.cat([insample_y[:,-self.label_len:,:], x_dec], dim=1)        

        enc_out = self.enc_embedding(insample_y, x_mark_enc)
        enc_out, _ = self.encoder(enc_out, attn_mask=None) # 注意力可视化

        dec_out = self.dec_embedding(x_dec, x_mark_dec)
        dec_out = self.decoder(dec_out, enc_out, x_mask=None, 
                               cross_mask=None)

        forecast = self.loss.domain_map(dec_out[:, -self.h:])
        return forecast
show_doc(Informer)
show_doc(Informer.fit, name='Informer.fit')
show_doc(Informer.predict, name='Informer.predict')

使用示例

import pandas as pd
import matplotlib.pyplot as plt

from neuralforecast import NeuralForecast
from neuralforecast.models import Informer
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic, augment_calendar_df

AirPassengersPanel, calendar_cols = augment_calendar_df(df=AirPassengersPanel, freq='M')

Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132次列车
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12项测试

model = Informer(h=12,
                 input_size=24,
                 hidden_size = 16,
                 conv_hidden_size = 32,
                 n_head = 2,
                 loss=MAE(),
                 futr_exog_list=calendar_cols,
                 scaler_type='robust',
                 learning_rate=1e-3,
                 max_steps=5,
                 val_check_steps=50,
                 early_stop_patience_steps=2)

nf = NeuralForecast(
    models=[model],
    freq='M'
)
nf.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)
forecasts = nf.predict(futr_df=Y_test_df)

Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])

if model.loss.is_distribution_output:
    plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
    plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
    plt.plot(plot_df['ds'], plot_df['Informer-median'], c='blue', label='median')
    plt.fill_between(x=plot_df['ds'][-12:], 
                    y1=plot_df['Informer-lo-90'][-12:].values, 
                    y2=plot_df['Informer-hi-90'][-12:].values,
                    alpha=0.4, label='level 90')
    plt.grid()
    plt.legend()
    plt.plot()
else:
    plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
    plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
    plt.plot(plot_df['ds'], plot_df['Informer'], c='blue', label='Forecast')
    plt.legend()
    plt.grid()

Give us a ⭐ on Github