%load_ext autoreload
%autoreload 2iTransformer
from fastcore.test import test_eq
from nbdev.showdoc import show_dociTransformer模型简单地采用了Transformer架构,但在反向维度上应用了注意力机制和前馈网络。这意味着每个单独系列的时间点被嵌入为标记。这样,注意力机制学习多变量相关性,而前馈网络学习非线性关系。

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from math import sqrt
from neuralforecast.losses.pytorch import MAE
from neuralforecast.common._base_multivariate import BaseMultivariate
from neuralforecast.common._modules import TransEncoder, TransEncoderLayer, AttentionLayer1. 辅助函数
1.1 注意力
class 三角因果掩码():
"""
三角因果掩码
"""
def __init__(self, B, L, device="cpu"):
mask_shape = [B, 1, L, L]
with torch.no_grad():
self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device)
@property
def mask(self):
return self._mask
class 全神贯注(nn.Module):
"""
全神贯注
"""
def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):
super(全神贯注, self).__init__()
self.scale = scale
self.mask_flag = mask_flag
self.output_attention = output_attention
self.dropout = nn.Dropout(attention_dropout)
def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):
B, L, H, E = queries.shape
_, S, _, D = values.shape
scale = self.scale or 1. / sqrt(E)
scores = torch.einsum("blhe,bshe->bhls", queries, keys)
if self.mask_flag:
if attn_mask is None:
attn_mask = 三角因果掩码(B, L, device=queries.device)
scores.masked_fill_(attn_mask.mask, -np.inf)
A = self.dropout(torch.softmax(scale * scores, dim=-1))
V = torch.einsum("bhls,bshd->blhd", A, values)
if self.output_attention:
return (V.contiguous(), A)
else:
return (V.contiguous(), None) 1.2 反向嵌入
class 数据嵌入_倒置(nn.Module):
"""
数据嵌入_倒置
"""
def __init__(self, c_in, hidden_size, dropout=0.1):
super(数据嵌入_倒置, self).__init__()
self.value_embedding = nn.Linear(c_in, hidden_size)
self.dropout = nn.Dropout(p=dropout)
def forward(self, x, x_mark):
x = x.permute(0, 2, 1)
# x: [批次变量时间]
if x_mark is None:
x = self.value_embedding(x)
else:
# 具备将协变量(如时间戳)作为标记的潜力
x = self.value_embedding(torch.cat([x, x_mark.permute(0, 2, 1)], 1))
# x: [批次变量 隐藏层大小]
return self.dropout(x)2. 模型
class iTransformer(BaseMultivariate):
""" iTransformer
**Parameters:**<br>
`h`: int, Forecast horizon. <br>
`input_size`: int, autorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].<br>
`n_series`: int, number of time-series.<br>
`futr_exog_list`: str list, future exogenous columns.<br>
`hist_exog_list`: str list, historic exogenous columns.<br>
`stat_exog_list`: str list, static exogenous columns.<br>
`hidden_size`: int, dimension of the model.<br>
`n_heads`: int, number of heads.<br>
`e_layers`: int, number of encoder layers.<br>
`d_layers`: int, number of decoder layers.<br>
`d_ff`: int, dimension of fully-connected layer.<br>
`factor`: int, attention factor.<br>
`dropout`: float, dropout rate.<br>
`use_norm`: bool, whether to normalize or not.<br>
`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>
`valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>
`max_steps`: int=1000, maximum number of training steps.<br>
`learning_rate`: float=1e-3, Learning rate between (0, 1).<br>
`num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.<br>
`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.<br>
`val_check_steps`: int=100, Number of training steps between every validation loss check.<br>
`batch_size`: int=32, number of different series in each batch.<br>
`step_size`: int=1, step size between each window of temporal data.<br>
`scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).<br>
`random_seed`: int=1, random_seed for pytorch initializer and numpy generators.<br>
`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.<br>
`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.<br>
`alias`: str, optional, Custom name of the model.<br>
`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).<br>
`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.<br>
`lr_scheduler`: Subclass of 'torch.optim.lr_scheduler.LRScheduler', optional, user specified lr_scheduler instead of the default choice (StepLR).<br>
`lr_scheduler_kwargs`: dict, optional, list of parameters used by the user specified `lr_scheduler`.<br>
`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).<br>
**References**<br>
- [Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, Mingsheng Long. "iTransformer: Inverted Transformers Are Effective for Time Series Forecasting"](https://arxiv.org/abs/2310.06625)
"""
# Class attributes
SAMPLING_TYPE = 'multivariate'
EXOGENOUS_FUTR = False
EXOGENOUS_HIST = False
EXOGENOUS_STAT = False
def __init__(self,
h,
input_size,
n_series,
futr_exog_list = None,
hist_exog_list = None,
stat_exog_list = None,
hidden_size: int = 512,
n_heads: int = 8,
e_layers: int = 2,
d_layers: int = 1,
d_ff: int = 2048,
factor: int = 1,
dropout: float = 0.1,
use_norm: bool = True,
loss = MAE(),
valid_loss = None,
max_steps: int = 1000,
learning_rate: float = 1e-3,
num_lr_decays: int = -1,
early_stop_patience_steps: int =-1,
val_check_steps: int = 100,
batch_size: int = 32,
step_size: int = 1,
scaler_type: str = 'identity',
random_seed: int = 1,
num_workers_loader: int = 0,
drop_last_loader: bool = False,
optimizer = None,
optimizer_kwargs = None,
lr_scheduler = None,
lr_scheduler_kwargs = None,
**trainer_kwargs):
super(iTransformer, self).__init__(h=h,
input_size=input_size,
n_series=n_series,
stat_exog_list = None,
futr_exog_list = None,
hist_exog_list = None,
loss=loss,
valid_loss=valid_loss,
max_steps=max_steps,
learning_rate=learning_rate,
num_lr_decays=num_lr_decays,
early_stop_patience_steps=early_stop_patience_steps,
val_check_steps=val_check_steps,
batch_size=batch_size,
step_size=step_size,
scaler_type=scaler_type,
random_seed=random_seed,
num_workers_loader=num_workers_loader,
drop_last_loader=drop_last_loader,
optimizer=optimizer,
optimizer_kwargs=optimizer_kwargs,
lr_scheduler=lr_scheduler,
lr_scheduler_kwargs=lr_scheduler_kwargs,
**trainer_kwargs)
self.enc_in = n_series
self.dec_in = n_series
self.c_out = n_series
self.hidden_size = hidden_size
self.n_heads = n_heads
self.e_layers = e_layers
self.d_layers = d_layers
self.d_ff = d_ff
self.factor = factor
self.dropout = dropout
self.use_norm = use_norm
# Architecture
self.enc_embedding = DataEmbedding_inverted(input_size, self.hidden_size, self.dropout)
self.encoder = TransEncoder(
[
TransEncoderLayer(
AttentionLayer(
FullAttention(False, self.factor, attention_dropout=self.dropout), self.hidden_size, self.n_heads),
self.hidden_size,
self.d_ff,
dropout=self.dropout,
activation=F.gelu
) for l in range(self.e_layers)
],
norm_layer=torch.nn.LayerNorm(self.hidden_size)
)
self.projector = nn.Linear(self.hidden_size, h, bias=True)
def forecast(self, x_enc):
if self.use_norm:
# Normalization from Non-stationary Transformer
means = x_enc.mean(1, keepdim=True).detach()
x_enc = x_enc - means
stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)
x_enc /= stdev
_, _, N = x_enc.shape # B L N
# B: batch_size; E: hidden_size;
# L: input_size; S: horizon(h);
# N: number of variate (tokens), can also includes covariates
# Embedding
# B L N -> B N E (B L N -> B L E in the vanilla Transformer)
enc_out = self.enc_embedding(x_enc, None) # covariates (e.g timestamp) can be also embedded as tokens
# B N E -> B N E (B L E -> B L E in the vanilla Transformer)
# the dimensions of embedded time series has been inverted, and then processed by native attn, layernorm and ffn modules
enc_out, attns = self.encoder(enc_out, attn_mask=None)
# B N E -> B N S -> B S N
dec_out = self.projector(enc_out).permute(0, 2, 1)[:, :, :N] # filter the covariates
if self.use_norm:
# De-Normalization from Non-stationary Transformer
dec_out = dec_out * (stdev[:, 0, :].unsqueeze(1).repeat(1, self.h, 1))
dec_out = dec_out + (means[:, 0, :].unsqueeze(1).repeat(1, self.h, 1))
return dec_out
def forward(self, windows_batch):
insample_y = windows_batch['insample_y']
y_pred = self.forecast(insample_y)
y_pred = y_pred[:, -self.h:, :]
y_pred = self.loss.domain_map(y_pred)
# 在 n_series == 1 的情况下,domain_map 可能已经压缩了最后一个维度。
if y_pred.ndim == 2:
return y_pred.unsqueeze(-1)
else:
return y_pred
show_doc(iTransformer)show_doc(iTransformer.fit, name='iTransformer.fit')show_doc(iTransformer.predict, name='iTransformer.predict')3. 使用示例
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import iTransformer
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic
from neuralforecast.losses.pytorch import MSE
Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 132次列车
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12项测试
model = iTransformer(h=12,
input_size=24,
n_series=2,
hidden_size=128,
n_heads=2,
e_layers=2,
d_layers=1,
d_ff=4,
factor=1,
dropout=0.1,
use_norm=True,
loss=MSE(),
valid_loss=MAE(),
early_stop_patience_steps=3,
batch_size=32)
fcst = NeuralForecast(models=[model], freq='M')
fcst.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)
forecasts = fcst.predict(futr_df=Y_test_df)
# 剧情预测
fig, ax = plt.subplots(1, 1, figsize = (20, 7))
Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])
plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['iTransformer'], c='blue', label='Forecast')
ax.set_title('AirPassengers Forecast', fontsize=22)
ax.set_ylabel('Monthly Passengers', fontsize=20)
ax.set_xlabel('Year', fontsize=20)
ax.legend(prop={'size': 15})
ax.grid()Give us a ⭐ on Github