%load_ext autoreload
%autoreload 2NBEATS
神经基础扩展分析(NBEATS)是一种基于多层感知机(MLP)的深度神经网络架构,具有前向和后向残差链接。该网络有两种变体:(1)在其可解释配置中,NBEATS 将信号依次投影到多项式和谐基上,以学习趋势和季节性成分;(2)在其通用配置中,它将多项式和谐基替换为恒等基,并增加网络的深度。具有外生变量的神经基础扩展分析(NBEATSx)结合了在预测时可用的外生时间变量的投影。
该方法在 M3、M4 和旅游竞赛数据集上表现出色,较 ESRNN M4 竞赛获胜者提高了 3% 的准确性。

from typing import Tuple, Optional
import numpy as np
import torch
import torch.nn as nn
from neuralforecast.losses.pytorch import MAE
from neuralforecast.common._base_windows import BaseWindowsfrom fastcore.test import test_eq
from nbdev.showdoc import show_doc
from neuralforecast.utils import generate_series
import matplotlib.pyplot as pltclass IdentityBasis(nn.Module):
def __init__(self, backcast_size: int, forecast_size: int,
out_features: int=1):
super().__init__()
self.out_features = out_features
self.forecast_size = forecast_size
self.backcast_size = backcast_size
def forward(self, theta: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
backcast = theta[:, :self.backcast_size]
forecast = theta[:, self.backcast_size:]
forecast = forecast.reshape(len(forecast), -1, self.out_features)
return backcast, forecast
class TrendBasis(nn.Module):
def __init__(self, degree_of_polynomial: int,
backcast_size: int, forecast_size: int,
out_features: int=1):
super().__init__()
self.out_features = out_features
polynomial_size = degree_of_polynomial + 1
self.backcast_basis = nn.Parameter(
torch.tensor(np.concatenate([np.power(np.arange(backcast_size, dtype=float) / backcast_size, i)[None, :]
for i in range(polynomial_size)]), dtype=torch.float32), requires_grad=False)
self.forecast_basis = nn.Parameter(
torch.tensor(np.concatenate([np.power(np.arange(forecast_size, dtype=float) / forecast_size, i)[None, :]
for i in range(polynomial_size)]), dtype=torch.float32), requires_grad=False)
def forward(self, theta: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
polynomial_size = self.forecast_basis.shape[0] # [多项式规模, L+H]
backcast_theta = theta[:, :polynomial_size]
forecast_theta = theta[:, polynomial_size:]
forecast_theta = forecast_theta.reshape(len(forecast_theta),polynomial_size,-1)
backcast = torch.einsum('bp,pt->bt', backcast_theta, self.backcast_basis)
forecast = torch.einsum('bpq,pt->btq', forecast_theta, self.forecast_basis)
return backcast, forecast
class SeasonalityBasis(nn.Module):
def __init__(self, harmonics: int,
backcast_size: int, forecast_size: int,
out_features: int=1):
super().__init__()
self.out_features = out_features
frequency = np.append(np.zeros(1, dtype=float),
np.arange(harmonics, harmonics / 2 * forecast_size,
dtype=float) / harmonics)[None, :]
backcast_grid = -2 * np.pi * (
np.arange(backcast_size, dtype=float)[:, None] / forecast_size) * frequency
forecast_grid = 2 * np.pi * (
np.arange(forecast_size, dtype=float)[:, None] / forecast_size) * frequency
backcast_cos_template = torch.tensor(np.transpose(np.cos(backcast_grid)), dtype=torch.float32)
backcast_sin_template = torch.tensor(np.transpose(np.sin(backcast_grid)), dtype=torch.float32)
backcast_template = torch.cat([backcast_cos_template, backcast_sin_template], dim=0)
forecast_cos_template = torch.tensor(np.transpose(np.cos(forecast_grid)), dtype=torch.float32)
forecast_sin_template = torch.tensor(np.transpose(np.sin(forecast_grid)), dtype=torch.float32)
forecast_template = torch.cat([forecast_cos_template, forecast_sin_template], dim=0)
self.backcast_basis = nn.Parameter(backcast_template, requires_grad=False)
self.forecast_basis = nn.Parameter(forecast_template, requires_grad=False)
def forward(self, theta: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
harmonic_size = self.forecast_basis.shape[0] # [谐波大小,L+H]
backcast_theta = theta[:, :harmonic_size]
forecast_theta = theta[:, harmonic_size:]
forecast_theta = forecast_theta.reshape(len(forecast_theta),harmonic_size,-1)
backcast = torch.einsum('bp,pt->bt', backcast_theta, self.backcast_basis)
forecast = torch.einsum('bpq,pt->btq', forecast_theta, self.forecast_basis)
return backcast, forecastACTIVATIONS = ['ReLU',
'Softplus',
'Tanh',
'SELU',
'LeakyReLU',
'PReLU',
'Sigmoid']
class NBEATSBlock(nn.Module):
"""
N-BEATS模块,接受一个基函数作为参数。
"""
def __init__(self,
input_size: int,
n_theta: int,
mlp_units: list,
basis: nn.Module,
dropout_prob: float,
activation: str):
"""
"""
super().__init__()
self.dropout_prob = dropout_prob
assert activation in ACTIVATIONS, f'{activation} is not in {ACTIVATIONS}'
activ = getattr(nn, activation)()
hidden_layers = [nn.Linear(in_features=input_size,
out_features=mlp_units[0][0])]
for layer in mlp_units:
hidden_layers.append(nn.Linear(in_features=layer[0],
out_features=layer[1]))
hidden_layers.append(activ)
if self.dropout_prob>0:
raise NotImplementedError('dropout')
#hidden_layers.append(nn.Dropout(p=self.dropout_prob))
output_layer = [nn.Linear(in_features=mlp_units[-1][1], out_features=n_theta)]
layers = hidden_layers + output_layer
self.layers = nn.Sequential(*layers)
self.basis = basis
def forward(self, insample_y: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
# 计算局部投影权重和投影
theta = self.layers(insample_y)
backcast, forecast = self.basis(theta)
return backcast, forecastclass NBEATS(BaseWindows):
""" NBEATS
The Neural Basis Expansion Analysis for Time Series (NBEATS), is a simple and yet
effective architecture, it is built with a deep stack of MLPs with the doubly
residual connections. It has a generic and interpretable architecture depending
on the blocks it uses. Its interpretable architecture is recommended for scarce
data settings, as it regularizes its predictions through projections unto harmonic
and trend basis well-suited for most forecasting tasks.
**Parameters:**<br>
`h`: int, forecast horizon.<br>
`input_size`: int, considered autorregresive inputs (lags), y=[1,2,3,4] input_size=2 -> lags=[1,2].<br>
`n_harmonics`: int, Number of harmonic terms for seasonality stack type. Note that len(n_harmonics) = len(stack_types). Note that it will only be used if a seasonality stack is used.<br>
`n_polynomials`: int, polynomial degree for trend stack. Note that len(n_polynomials) = len(stack_types). Note that it will only be used if a trend stack is used.<br>
`stack_types`: List[str], List of stack types. Subset from ['seasonality', 'trend', 'identity'].<br>
`n_blocks`: List[int], Number of blocks for each stack. Note that len(n_blocks) = len(stack_types).<br>
`mlp_units`: List[List[int]], Structure of hidden layers for each stack type. Each internal list should contain the number of units of each hidden layer. Note that len(n_hidden) = len(stack_types).<br>
`dropout_prob_theta`: float, Float between (0, 1). Dropout for N-BEATS basis.<br>
`shared_weights`: bool, If True, all blocks within each stack will share parameters. <br>
`activation`: str, activation from ['ReLU', 'Softplus', 'Tanh', 'SELU', 'LeakyReLU', 'PReLU', 'Sigmoid'].<br>
`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>
`valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).<br>
`max_steps`: int=1000, maximum number of training steps.<br>
`learning_rate`: float=1e-3, Learning rate between (0, 1).<br>
`num_lr_decays`: int=3, Number of learning rate decays, evenly distributed across max_steps.<br>
`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.<br>
`val_check_steps`: int=100, Number of training steps between every validation loss check.<br>
`batch_size`: int=32, number of different series in each batch.<br>
`valid_batch_size`: int=None, number of different series in each validation and test batch, if None uses batch_size.<br>
`windows_batch_size`: int=1024, number of windows to sample in each training batch, default uses all.<br>
`inference_windows_batch_size`: int=-1, number of windows to sample in each inference batch, -1 uses all.<br>
`start_padding_enabled`: bool=False, if True, the model will pad the time series with zeros at the beginning, by input size.<br>
`step_size`: int=1, step size between each window of temporal data.<br>
`scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).<br>
`random_seed`: int, random_seed for pytorch initializer and numpy generators.<br>
`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.<br>
`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.<br>
`alias`: str, optional, Custom name of the model.<br>
`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).<br>
`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.<br>
`lr_scheduler`: Subclass of 'torch.optim.lr_scheduler.LRScheduler', optional, user specified lr_scheduler instead of the default choice (StepLR).<br>
`lr_scheduler_kwargs`: dict, optional, list of parameters used by the user specified `lr_scheduler`.<br>
`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).<br>
**References:**<br>
-[Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, Yoshua Bengio (2019).
"N-BEATS: Neural basis expansion analysis for interpretable time series forecasting".](https://arxiv.org/abs/1905.10437)
"""
# Class attributes
SAMPLING_TYPE = 'windows'
EXOGENOUS_FUTR = False
EXOGENOUS_HIST = False
EXOGENOUS_STAT = False
def __init__(self,
h,
input_size,
n_harmonics: int = 2,
n_polynomials: int = 2,
stack_types: list = ['identity', 'trend', 'seasonality'],
n_blocks: list = [1, 1, 1],
mlp_units: list = 3 * [[512, 512]],
dropout_prob_theta: float = 0.,
activation: str = 'ReLU',
shared_weights: bool = False,
loss = MAE(),
valid_loss = None,
max_steps: int = 1000,
learning_rate: float = 1e-3,
num_lr_decays: int = 3,
early_stop_patience_steps: int =-1,
val_check_steps: int = 100,
batch_size: int = 32,
valid_batch_size: Optional[int] = None,
windows_batch_size: int = 1024,
inference_windows_batch_size: int = -1,
start_padding_enabled = False,
step_size: int = 1,
scaler_type: str ='identity',
random_seed: int = 1,
num_workers_loader: int = 0,
drop_last_loader: bool = False,
optimizer = None,
optimizer_kwargs = None,
lr_scheduler = None,
lr_scheduler_kwargs = None,
**trainer_kwargs):
# Protect horizon collapsed seasonality and trend NBEATSx-i basis
if h == 1 and (("seasonality" in stack_types) or ("trend" in stack_types)):
raise Exception(
"Horizon `h=1` incompatible with `seasonality` or `trend` in stacks"
)
# Inherit BaseWindows class
super(NBEATS, self).__init__(h=h,
input_size=input_size,
loss=loss,
valid_loss=valid_loss,
max_steps=max_steps,
learning_rate=learning_rate,
num_lr_decays=num_lr_decays,
early_stop_patience_steps=early_stop_patience_steps,
val_check_steps=val_check_steps,
batch_size=batch_size,
windows_batch_size=windows_batch_size,
valid_batch_size=valid_batch_size,
inference_windows_batch_size=inference_windows_batch_size,
start_padding_enabled=start_padding_enabled,
step_size=step_size,
scaler_type=scaler_type,
num_workers_loader=num_workers_loader,
drop_last_loader=drop_last_loader,
random_seed=random_seed,
optimizer=optimizer,
optimizer_kwargs=optimizer_kwargs,
lr_scheduler=lr_scheduler,
lr_scheduler_kwargs=lr_scheduler_kwargs,
**trainer_kwargs)
# Architecture
blocks = self.create_stack(h=h,
input_size=input_size,
stack_types=stack_types,
n_blocks=n_blocks,
mlp_units=mlp_units,
dropout_prob_theta=dropout_prob_theta,
activation=activation,
shared_weights=shared_weights,
n_polynomials=n_polynomials,
n_harmonics=n_harmonics)
self.blocks = torch.nn.ModuleList(blocks)
def create_stack(self, stack_types,
n_blocks,
input_size,
h,
mlp_units,
dropout_prob_theta,
activation, shared_weights,
n_polynomials, n_harmonics):
block_list = []
for i in range(len(stack_types)):
for block_id in range(n_blocks[i]):
# Shared weights
if shared_weights and block_id>0:
nbeats_block = block_list[-1]
else:
if stack_types[i] == 'seasonality':
n_theta = 2 * (self.loss.outputsize_multiplier + 1) * \
int(np.ceil(n_harmonics / 2 * h) - (n_harmonics - 1))
basis = SeasonalityBasis(harmonics=n_harmonics,
backcast_size=input_size,forecast_size=h,
out_features=self.loss.outputsize_multiplier)
elif stack_types[i] == 'trend':
n_theta = (self.loss.outputsize_multiplier + 1) * (n_polynomials + 1)
basis = TrendBasis(degree_of_polynomial=n_polynomials,
backcast_size=input_size,forecast_size=h,
out_features=self.loss.outputsize_multiplier)
elif stack_types[i] == 'identity':
n_theta = input_size + self.loss.outputsize_multiplier * h
basis = IdentityBasis(backcast_size=input_size, forecast_size=h,
out_features=self.loss.outputsize_multiplier)
else:
raise ValueError(f'Block type {stack_types[i]} not found!')
nbeats_block = NBEATSBlock(input_size=input_size,
n_theta=n_theta,
mlp_units=mlp_units,
basis=basis,
dropout_prob=dropout_prob_theta,
activation=activation)
# 选择评估类型并将其应用于块的所有层
block_list.append(nbeats_block)
return block_list
def forward(self, windows_batch):
# 解析Windows批处理文件
insample_y = windows_batch['insample_y']
insample_mask = windows_batch['insample_mask']
# NBEATS' forward
residuals = insample_y.flip(dims=(-1,)) # backcast init
insample_mask = insample_mask.flip(dims=(-1,))
forecast = insample_y[:, -1:, None] # Level with Naive1
block_forecasts = [ forecast.repeat(1, self.h, 1) ]
for i, block in enumerate(self.blocks):
backcast, block_forecast = block(insample_y=residuals)
residuals = (residuals - backcast) * insample_mask
forecast = forecast + block_forecast
if self.decompose_forecast:
block_forecasts.append(block_forecast)
# Adapting output's domain
forecast = self.loss.domain_map(forecast)
if self.decompose_forecast:
# (批次大小,块数,头数,输出特征数)
block_forecasts = torch.stack(block_forecasts)
block_forecasts = block_forecasts.permute(1,0,2,3)
block_forecasts = block_forecasts.squeeze(-1) # 单变量输出
return block_forecasts
else:
return forecastshow_doc(NBEATS)show_doc(NBEATS.fit, name='NBEATS.fit')show_doc(NBEATS.predict, name='NBEATS.predict')import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast.tsdataset import TimeSeriesDataset
from neuralforecast.utils import AirPassengersDF as Y_dfY_train_df = Y_df[Y_df.ds<Y_df['ds'].values[-12]] # 132次列车
Y_test_df = Y_df[Y_df.ds>=Y_df['ds'].values[-12]] # 12项测试
dataset, *_ = TimeSeriesDataset.from_df(df = Y_train_df)
nbeats = NBEATS(h=12, input_size=24, windows_batch_size=None,
stack_types=['identity', 'trend', 'seasonality'], max_steps=1)
nbeats.fit(dataset=dataset)
y_hat = nbeats.predict(dataset=dataset)
Y_test_df['N-BEATS'] = y_hat
pd.concat([Y_train_df, Y_test_df]).drop('unique_id', axis=1).set_index('ds').plot()#测试我们恢复相同的预测
y_hat2 = nbeats.predict(dataset=dataset)
test_eq(y_hat, y_hat2)#测试无泄漏,测试规模为test_size
dataset, *_ = TimeSeriesDataset.from_df(Y_df)
model = NBEATS(input_size=24, h=12,
windows_batch_size=None, max_steps=1)
model.fit(dataset=dataset, test_size=12)
y_hat_test = model.predict(dataset=dataset, step_size=1)
np.testing.assert_almost_equal(y_hat, y_hat_test, decimal=4)
#测试我们恢复相同的预测
y_hat_test2 = model.predict(dataset=dataset, step_size=1)
test_eq(y_hat_test, y_hat_test2)# 测试验证步骤
dataset, *_ = TimeSeriesDataset.from_df(Y_train_df)
model = NBEATS(input_size=24, h=12, windows_batch_size=None, max_steps=1)
model.fit(dataset=dataset, val_size=12)
y_hat_w_val = model.predict(dataset=dataset)
Y_test_df['N-BEATS'] = y_hat_w_val
pd.concat([Y_train_df, Y_test_df]).drop('unique_id', axis=1).set_index('ds').plot()# 使用test_size和val_size进行无泄漏测试
dataset, *_ = TimeSeriesDataset.from_df(Y_train_df)
model = NBEATS(input_size=24, h=12, windows_batch_size=None, max_steps=1)
model.fit(dataset=dataset, val_size=12)
y_hat_w_val = model.predict(dataset=dataset)
dataset, *_ = TimeSeriesDataset.from_df(Y_df)
model = NBEATS(input_size=24, h=12, windows_batch_size=None, max_steps=1)
model.fit(dataset=dataset, val_size=12, test_size=12)
y_hat_test_w_val = model.predict(dataset=dataset, step_size=1)
np.testing.assert_almost_equal(y_hat_test_w_val, y_hat_w_val, decimal=4)# 定性分解评价
y_hat = model.decompose(dataset=dataset)
fig, ax = plt.subplots(5, 1, figsize=(10, 15))
ax[0].plot(Y_test_df['y'].values, label='True', color="#9C9DB2", linewidth=4)
ax[0].plot(y_hat.sum(axis=1).flatten(), label='Forecast', color="#7B3841")
ax[0].grid()
ax[0].legend(prop={'size': 20})
for label in (ax[0].get_xticklabels() + ax[0].get_yticklabels()):
label.set_fontsize(18)
ax[0].set_ylabel('y', fontsize=20)
ax[1].plot(y_hat[0,0], label='level', color="#7B3841")
ax[1].grid()
ax[1].set_ylabel('Level', fontsize=20)
ax[2].plot(y_hat[0,1], label='stack1', color="#7B3841")
ax[2].grid()
ax[2].set_ylabel('Identity', fontsize=20)
ax[3].plot(y_hat[0,2], label='stack2', color="#D9AE9E")
ax[3].grid()
ax[3].set_ylabel('Trend', fontsize=20)
ax[4].plot(y_hat[0,3], label='stack3', color="#D9AE9E")
ax[4].grid()
ax[4].set_ylabel('Seasonality', fontsize=20)
ax[4].set_xlabel('Prediction \u03C4 \u2208 {t+1,..., t+H}', fontsize=20)使用示例
import pandas as pd
import matplotlib.pyplot as plt
from neuralforecast import NeuralForecast
from neuralforecast.models import NBEATS
from neuralforecast.losses.pytorch import DistributionLoss
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic
Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132次列车
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12项测试
model = NBEATS(h=12, input_size=24,
loss=DistributionLoss(distribution='Poisson', level=[80, 90]),
stack_types = ['identity', 'trend', 'seasonality'],
max_steps=100,
val_check_steps=10,
early_stop_patience_steps=2)
fcst = NeuralForecast(
models=[model],
freq='M'
)
fcst.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)
forecasts = fcst.predict(futr_df=Y_test_df)
# 绘制分位数预测图
Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])
plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
plt.plot(plot_df['ds'], plot_df['NBEATS-median'], c='blue', label='median')
plt.fill_between(x=plot_df['ds'][-12:],
y1=plot_df['NBEATS-lo-90'][-12:].values,
y2=plot_df['NBEATS-hi-90'][-12:].values,
alpha=0.4, label='level 90')
plt.grid()
plt.legend()
plt.plot()Give us a ⭐ on Github