TimesNet

TimesNet单变量模型解决了对多个时段和跨时段时间变化建模的挑战。

该架构具有以下独特特征: - 一个嵌入层,将输入序列映射到潜在空间。 - 基于FFT找到的周期,将一维时间序列转换为二维张量。 - 一个卷积Inception模块,捕捉不同尺度和周期之间的时间变化。

参考文献
- Haixu Wu和Tengge Hu和Yong Liu和Hang Zhou和Jianmin Wang和Mingsheng Long. TimesNet:用于一般时间序列分析的时间二维变化建模 - 基于https://github.com/thuml/Time-Series-Library中的实现(许可: https://github.com/thuml/Time-Series-Library/blob/main/LICENSE)

图 1. TimesNet 架构。
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.fft

from neuralforecast.common._modules import DataEmbedding
from neuralforecast.common._base_windows import BaseWindows

from neuralforecast.losses.pytorch import MAE
from fastcore.test import test_eq
from nbdev.showdoc import show_doc

1. 辅助函数

class Inception_Block_V1(nn.Module):
    """
    Inception_Block_V1
    """    
    def __init__(self, in_channels, out_channels, num_kernels=6, init_weight=True):
        super(Inception_Block_V1, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_kernels = num_kernels
        kernels = []
        for i in range(self.num_kernels):
            kernels.append(nn.Conv2d(in_channels, out_channels, kernel_size=2 * i + 1, padding=i))
        self.kernels = nn.ModuleList(kernels)
        if init_weight:
            self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def forward(self, x):
        res_list = []
        for i in range(self.num_kernels):
            res_list.append(self.kernels[i](x))
        res = torch.stack(res_list, dim=-1).mean(-1)
        return res
def FFT_for_Period(x, k=2):
    # [B, T, C]
    xf = torch.fft.rfft(x, dim=1)
    # 通过振幅寻找周期
    frequency_list = abs(xf).mean(0).mean(-1)
    frequency_list[0] = 0
    _, top_list = torch.topk(frequency_list, k)
    top_list = top_list.detach().cpu().numpy()
    period = x.shape[1] // top_list
    return period, abs(xf).mean(-1)[:, top_list]

class 时间区块(nn.Module):
    """
    时间区块
    """       
    def __init__(self, input_size, h, k, hidden_size, conv_hidden_size, num_kernels):
        super(时间区块, self).__init__()
        self.input_size = input_size
        self.h = h
        self.k = k
        # 参数高效设计
        self.conv = nn.Sequential(
            Inception_Block_V1(hidden_size, conv_hidden_size,
                               num_kernels=num_kernels),
            nn.GELU(),
            Inception_Block_V1(conv_hidden_size, hidden_size,
                               num_kernels=num_kernels)
        )

    def forward(self, x):
        B, T, N = x.size()
        period_list, period_weight = FFT_for_Period(x, self.k)

        res = []
        for i in range(self.k):
            period = period_list[i]
            # 填充
            if (self.input_size + self.h) % period != 0:
                length = (
                                 ((self.input_size + self.h) // period) + 1) * period
                padding = torch.zeros([x.shape[0], (length - (self.input_size + self.h)), x.shape[2]], device=x.device)
                out = torch.cat([x, padding], dim=1)
            else:
                length = (self.input_size + self.h)
                out = x
            # 重塑
            out = out.reshape(B, length // period, period,
                              N).permute(0, 3, 1, 2).contiguous()
            # 2D卷积:从1D变体到2D变体
            out = self.conv(out)
            # 重塑回原状
            out = out.permute(0, 2, 3, 1).reshape(B, -1, N)
            res.append(out[:, :(self.input_size + self.h), :])
        res = torch.stack(res, dim=-1)
        # 自适应聚合
        period_weight = F.softmax(period_weight, dim=1)
        period_weight = period_weight.unsqueeze(
            1).unsqueeze(1).repeat(1, T, N, 1)
        res = torch.sum(res * period_weight, -1)
        # 残差连接
        res = res + x
        return res

2. TimesNet

class TimesNet(BaseWindows):
    """ TimesNet

    The TimesNet univariate model tackles the challenge of modeling multiple intraperiod and interperiod temporal variations.
    
    Parameters
    ----------
    h : int
        Forecast horizon.
    input_size : int
        Length of input window (lags).
    futr_exog_list : list of str, optional (default=None)
        Future exogenous columns.
    hist_exog_list : list of str, optional (default=None)
        Historic exogenous columns.
    stat_exog_list : list of str, optional (default=None)
        Static exogenous columns.
    exclude_insample_y : bool (default=False)
        The model skips the autoregressive features y[t-input_size:t] if True
    hidden_size : int (default=64)
        Size of embedding for embedding and encoders.
    dropout : float between [0, 1) (default=0.1)
        Dropout for embeddings.
    conv_hidden_size: int (default=64)
        Channels of the Inception block.
    top_k: int (default=5)
        Number of periods.
    num_kernels: int (default=6)
        Number of kernels for the Inception block.
    encoder_layers : int, (default=2)
        Number of encoder layers.
    loss: PyTorch module (default=MAE())
        Instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
    valid_loss: PyTorch module (default=None, uses loss)
        Instantiated validation loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
    max_steps: int (default=1000)
        Maximum number of training steps.
    learning_rate : float (default=1e-4)
        Learning rate.
    num_lr_decays`: int (default=-1)
        Number of learning rate decays, evenly distributed across max_steps. If -1, no learning rate decay is performed.
    early_stop_patience_steps : int (default=-1)
        Number of validation iterations before early stopping. If -1, no early stopping is performed.
    val_check_steps : int (default=100)
        Number of training steps between every validation loss check.
    batch_size : int (default=32)
        Number of different series in each batch.
    valid_batch_size : int (default=None)
        Number of different series in each validation and test batch, if None uses batch_size.
    windows_batch_size : int (default=64)
        Number of windows to sample in each training batch.
    inference_windows_batch_size : int (default=256)
        Number of windows to sample in each inference batch.
    start_padding_enabled : bool (default=False)
        If True, the model will pad the time series with zeros at the beginning by input size.
    scaler_type : str (default='standard')
        Type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).<br>
    random_seed : int (default=1)
        Random_seed for pytorch initializer and numpy generators.
    num_workers_loader : int (default=0)
        Workers to be used by `TimeSeriesDataLoader`.
    drop_last_loader : bool (default=False)
        If True `TimeSeriesDataLoader` drops last non-full batch.
    `optimizer`: Subclass of 'torch.optim.Optimizer', optional (default=None)
        User specified optimizer instead of the default choice (Adam).
    `optimizer_kwargs`: dict, optional (defualt=None)
        List of parameters used by the user specified `optimizer`.
    `lr_scheduler`: Subclass of 'torch.optim.lr_scheduler.LRScheduler', optional, user specified lr_scheduler instead of the default choice (StepLR).<br>
    `lr_scheduler_kwargs`: dict, optional, list of parameters used by the user specified `lr_scheduler`.<br>        
    **trainer_kwargs
        Keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer)

    References
    ----------
    Haixu Wu and Tengge Hu and Yong Liu and Hang Zhou and Jianmin Wang and Mingsheng Long. TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis. https://openreview.net/pdf?id=ju_Uqw384Oq
    """
    # Class attributes
    SAMPLING_TYPE = 'windows'
    EXOGENOUS_FUTR = True
    EXOGENOUS_HIST = False
    EXOGENOUS_STAT = False    

    def __init__(self,
                 h: int, 
                 input_size: int,
                 stat_exog_list = None,
                 hist_exog_list = None,
                 futr_exog_list = None,
                 exclude_insample_y = False,
                 hidden_size: int = 64, 
                 dropout: float = 0.1,
                 conv_hidden_size: int = 64,
                 top_k: int = 5,
                 num_kernels: int = 6,
                 encoder_layers: int = 2,
                 loss = MAE(),
                 valid_loss = None,
                 max_steps: int = 1000,
                 learning_rate: float = 1e-4,
                 num_lr_decays: int = -1,
                 early_stop_patience_steps: int =-1,
                 val_check_steps: int = 100,
                 batch_size: int = 32,
                 valid_batch_size: Optional[int] = None,
                 windows_batch_size = 64,
                 inference_windows_batch_size = 256,
                 start_padding_enabled = False,
                 step_size: int = 1,
                 scaler_type: str = 'standard',
                 random_seed: int = 1,
                 num_workers_loader: int = 0,
                 drop_last_loader: bool = False,
                 optimizer = None,
                 optimizer_kwargs = None,
                 lr_scheduler = None,
                 lr_scheduler_kwargs = None,                 
                 **trainer_kwargs):
        super(TimesNet, self).__init__(h=h,
                                       input_size=input_size,
                                       hist_exog_list=hist_exog_list,
                                       stat_exog_list=stat_exog_list,
                                       futr_exog_list = futr_exog_list,
                                       exclude_insample_y = exclude_insample_y,
                                       loss=loss,
                                       valid_loss=valid_loss,
                                       max_steps=max_steps,
                                       learning_rate=learning_rate,
                                       num_lr_decays=num_lr_decays,
                                       early_stop_patience_steps=early_stop_patience_steps,
                                       val_check_steps=val_check_steps,
                                       batch_size=batch_size,
                                       windows_batch_size=windows_batch_size,
                                       valid_batch_size=valid_batch_size,
                                       inference_windows_batch_size=inference_windows_batch_size,
                                       start_padding_enabled = start_padding_enabled,
                                       step_size=step_size,
                                       scaler_type=scaler_type,
                                       num_workers_loader=num_workers_loader,
                                       drop_last_loader=drop_last_loader,
                                       random_seed=random_seed,
                                       optimizer=optimizer,
                                       optimizer_kwargs=optimizer_kwargs,
                                       lr_scheduler=lr_scheduler,
                                       lr_scheduler_kwargs=lr_scheduler_kwargs,                                       
                                       **trainer_kwargs)

        # Architecture
        self.c_out = self.loss.outputsize_multiplier
        self.enc_in = 1 
        self.dec_in = 1

        self.model = nn.ModuleList([TimesBlock(input_size=input_size,
                                               h=h,
                                               k=top_k,
                                               hidden_size=hidden_size,
                                               conv_hidden_size=conv_hidden_size,
                                               num_kernels=num_kernels)
                                    for _ in range(encoder_layers)])

        self.enc_embedding = DataEmbedding(c_in=self.enc_in,
                                            exog_input_size=self.futr_exog_size,
                                            hidden_size=hidden_size, 
                                            pos_embedding=True, # Original implementation uses true
                                            dropout=dropout)
        self.encoder_layers = encoder_layers
        self.layer_norm = nn.LayerNorm(hidden_size)
        self.predict_linear = nn.Linear(self.input_size, self.h + self.input_size)
        self.projection = nn.Linear(hidden_size, self.c_out, bias=True)

    def forward(self, windows_batch):

        # Parse windows_batch
        insample_y    = windows_batch['insample_y']
        #insample_mask = windows_batch['insample_mask']
        #hist_exog     = windows_batch['hist_exog']
        #stat_exog     = windows_batch['stat_exog']
        futr_exog     = windows_batch['futr_exog']

        # 解析输入
        insample_y = insample_y.unsqueeze(-1) # [Ws,L,1]
        if self.futr_exog_size > 0:
            x_mark_enc = futr_exog[:,:self.input_size,:]
        else:
            x_mark_enc = None

        # 嵌入
        enc_out = self.enc_embedding(insample_y, x_mark_enc)
        enc_out = self.predict_linear(enc_out.permute(0, 2, 1)).permute(0, 2, 1)  # 对齐时间维度
        # TimesNet
        for i in range(self.encoder_layers):
            enc_out = self.layer_norm(self.model[i](enc_out))
        # 项目回顾
        dec_out = self.projection(enc_out)

        forecast = self.loss.domain_map(dec_out[:, -self.h:])
        return forecast
show_doc(TimesNet)
show_doc(TimesNet.fit, name='TimesNet.fit')
show_doc(TimesNet.predict, name='TimesNet.predict')

使用示例

import pandas as pd
import matplotlib.pyplot as plt

from neuralforecast import NeuralForecast
from neuralforecast.losses.pytorch import DistributionLoss
from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic, augment_calendar_df

AirPassengersPanel, calendar_cols = augment_calendar_df(df=AirPassengersPanel, freq='M')

Y_train_df = AirPassengersPanel[AirPassengersPanel.ds<AirPassengersPanel['ds'].values[-12]] # 132次列车
Y_test_df = AirPassengersPanel[AirPassengersPanel.ds>=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12项测试

model = TimesNet(h=12,
                 input_size=24,
                 hidden_size = 16,
                 conv_hidden_size = 32,
                 loss=DistributionLoss(distribution='Normal', level=[80, 90]),
                 futr_exog_list=calendar_cols,
                 scaler_type='standard',
                 learning_rate=1e-3,
                 max_steps=5,
                 val_check_steps=50,
                 early_stop_patience_steps=2)

nf = NeuralForecast(
    models=[model],
    freq='M'
)
nf.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)
forecasts = nf.predict(futr_df=Y_test_df)

Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])
plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)
plot_df = pd.concat([Y_train_df, plot_df])

if model.loss.is_distribution_output:
    plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
    plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
    plt.plot(plot_df['ds'], plot_df['TimesNet-median'], c='blue', label='median')
    plt.fill_between(x=plot_df['ds'][-12:], 
                    y1=plot_df['TimesNet-lo-90'][-12:].values, 
                    y2=plot_df['TimesNet-hi-90'][-12:].values,
                    alpha=0.4, label='level 90')
    plt.grid()
    plt.legend()
    plt.plot()
else:
    plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)
    plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')
    plt.plot(plot_df['ds'], plot_df['TimesNet'], c='blue', label='Forecast')
    plt.legend()
    plt.grid()

Give us a ⭐ on Github