本笔记本是一个用于预处理和分析聊天数据集的工具,这些数据集用于微调聊天模型。 它会检查格式错误、提供基本统计数据,并估算微调成本的token数量。 此处展示的方法对应gpt-3.5-turbo的当前微调方法。 对于像babbage-002和davinci-002这样的模型,请参阅旧版微调。
import json
import tiktoken # for token counting
import numpy as np
from collections import defaultdict数据加载
我们首先从示例JSONL文件加载聊天数据集。
data_path = "data/toy_chat_fine_tuning.jsonl"
# Load the dataset
with open(data_path, 'r', encoding='utf-8') as f:
dataset = [json.loads(line) for line in f]
# Initial dataset stats
print("Num examples:", len(dataset))
print("First example:")
for message in dataset[0]["messages"]:
print(message)Num examples: 5
First example:
{'role': 'system', 'content': 'You are a happy assistant that puts a positive spin on everything.'}
{'role': 'user', 'content': 'I fell off my bike today.'}
{'role': 'assistant', 'content': "It's great that you're getting exercise outdoors!"}
格式验证
我们可以执行各种错误检查,以验证数据集中的每个对话是否符合微调API预期的格式。根据错误性质进行分类,以便更轻松地进行调试。
- 数据类型检查: 检查数据集中的每个条目是否为字典(
dict)。错误类型:data_type。 - 消息列表的存在: 检查每个条目中是否存在
messages列表。错误类型:missing_messages_list。 - 消息键检查: 验证
messages列表中的每条消息是否包含role和content键。错误类型:message_missing_key。 - 消息中的未识别键: 如果消息包含除
role、content、weight、function_call和name之外的键,则记录日志。错误类型:message_unrecognized_key。 - 角色验证: 确保
role是"system"、"user"或"assistant"中的一个。错误类型:unrecognized_role。 - 内容验证: 验证
content是否包含文本数据且为字符串类型。错误类型:missing_content。 - 助手消息存在性检查: 确保每个对话至少包含一条来自助手的信息。错误类型:
example_missing_assistant_message.
以下代码执行这些检查,并输出发现的每种错误类型的计数。这对于调试和确保数据集准备好进行下一步非常有用。
# Format error checks
format_errors = defaultdict(int)
for ex in dataset:
if not isinstance(ex, dict):
format_errors["data_type"] += 1
continue
messages = ex.get("messages", None)
if not messages:
format_errors["missing_messages_list"] += 1
continue
for message in messages:
if "role" not in message or "content" not in message:
format_errors["message_missing_key"] += 1
if any(k not in ("role", "content", "name", "function_call", "weight") for k in message):
format_errors["message_unrecognized_key"] += 1
if message.get("role", None) not in ("system", "user", "assistant", "function"):
format_errors["unrecognized_role"] += 1
content = message.get("content", None)
function_call = message.get("function_call", None)
if (not content and not function_call) or not isinstance(content, str):
format_errors["missing_content"] += 1
if not any(message.get("role", None) == "assistant" for message in messages):
format_errors["example_missing_assistant_message"] += 1
if format_errors:
print("Found errors:")
for k, v in format_errors.items():
print(f"{k}: {v}")
else:
print("No errors found")No errors found
Token计数工具
让我们定义一些在笔记本后续部分会用到的实用工具。
encoding = tiktoken.get_encoding("cl100k_base")
# not exact!
# simplified from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def num_tokens_from_messages(messages, tokens_per_message=3, tokens_per_name=1):
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3
return num_tokens
def num_assistant_tokens_from_messages(messages):
num_tokens = 0
for message in messages:
if message["role"] == "assistant":
num_tokens += len(encoding.encode(message["content"]))
return num_tokens
def print_distribution(values, name):
print(f"\n#### Distribution of {name}:")
print(f"min / max: {min(values)}, {max(values)}")
print(f"mean / median: {np.mean(values)}, {np.median(values)}")
print(f"p5 / p95: {np.quantile(values, 0.1)}, {np.quantile(values, 0.9)}")数据警告与令牌计数
通过一些轻量级分析,我们可以识别数据集中的潜在问题,比如缺失的消息,并提供关于消息和令牌数量的统计洞察。
- 缺少系统/用户消息: 统计缺少"system"或"user"消息的对话数量。这些消息对于定义助手行为和启动对话至关重要。
- 每条示例的消息数量: 汇总每条对话中消息数量的分布情况,帮助理解对话复杂度。
- 每个示例的总令牌数: 计算并汇总每个对话中总令牌数的分布情况。对于理解微调成本非常重要。
- 助手消息中的令牌数: 计算每次对话中助手消息的令牌数量并汇总该分布情况。有助于理解助手的详细程度。
- 令牌限制警告: 检查是否有任何示例超出最大令牌限制(16,385个令牌),因为此类示例在微调期间将被截断,可能导致数据丢失。
# Warnings and tokens counts
n_missing_system = 0
n_missing_user = 0
n_messages = []
convo_lens = []
assistant_message_lens = []
for ex in dataset:
messages = ex["messages"]
if not any(message["role"] == "system" for message in messages):
n_missing_system += 1
if not any(message["role"] == "user" for message in messages):
n_missing_user += 1
n_messages.append(len(messages))
convo_lens.append(num_tokens_from_messages(messages))
assistant_message_lens.append(num_assistant_tokens_from_messages(messages))
print("Num examples missing system message:", n_missing_system)
print("Num examples missing user message:", n_missing_user)
print_distribution(n_messages, "num_messages_per_example")
print_distribution(convo_lens, "num_total_tokens_per_example")
print_distribution(assistant_message_lens, "num_assistant_tokens_per_example")
n_too_long = sum(l > 16385 for l in convo_lens)
print(f"\n{n_too_long} examples may be over the 16,385 token limit, they will be truncated during fine-tuning")Num examples missing system message: 1 Num examples missing user message: 1 #### Distribution of num_messages_per_example: min / max: 2, 9 mean / median: 3.8, 3.0 p5 / p95: 2.0, 6.6000000000000005 #### Distribution of num_total_tokens_per_example: min / max: 26, 8032 mean / median: 1648.4, 45.0 p5 / p95: 26.8, 4863.6 #### Distribution of num_assistant_tokens_per_example: min / max: 4, 8000 mean / median: 1610.2, 10.0 p5 / p95: 6.0, 4811.200000000001 0 examples may be over the 16,385 token limit, they will be truncated during fine-tuning
成本估算
在最后这一部分,我们预估了微调将使用的总token数量,这有助于我们估算成本。值得注意的是,微调任务的持续时间也会随着token数量的增加而延长。
# Pricing and default n_epochs estimate
MAX_TOKENS_PER_EXAMPLE = 16385
TARGET_EPOCHS = 3
MIN_TARGET_EXAMPLES = 100
MAX_TARGET_EXAMPLES = 25000
MIN_DEFAULT_EPOCHS = 1
MAX_DEFAULT_EPOCHS = 25
n_epochs = TARGET_EPOCHS
n_train_examples = len(dataset)
if n_train_examples * TARGET_EPOCHS < MIN_TARGET_EXAMPLES:
n_epochs = min(MAX_DEFAULT_EPOCHS, MIN_TARGET_EXAMPLES // n_train_examples)
elif n_train_examples * TARGET_EPOCHS > MAX_TARGET_EXAMPLES:
n_epochs = max(MIN_DEFAULT_EPOCHS, MAX_TARGET_EXAMPLES // n_train_examples)
n_billing_tokens_in_dataset = sum(min(MAX_TOKENS_PER_EXAMPLE, length) for length in convo_lens)
print(f"Dataset has ~{n_billing_tokens_in_dataset} tokens that will be charged for during training")
print(f"By default, you'll train for {n_epochs} epochs on this dataset")
print(f"By default, you'll be charged for ~{n_epochs * n_billing_tokens_in_dataset} tokens")Dataset has ~4306 tokens that will be charged for during training By default, you'll train for 20 epochs on this dataset By default, you'll be charged for ~86120 tokens
查看 https://openai.com/pricing 估算总成本。