2024年11月26日

嵌入维基百科文章以进行搜索

本笔记本展示了我们如何为搜索准备维基百科文章数据集,该数据集用于Question_answering_using_embeddings.ipynb

流程:

  1. 前提条件:导入库,设置API密钥(如需要)
  2. 收集:我们下载了几百篇关于2022年奥运会的维基百科文章
  3. 分块:文档被分割成短小、半自包含的段落以便进行嵌入
  4. 嵌入:每个部分都使用OpenAI API进行嵌入
  5. 存储:嵌入向量会被保存到CSV文件中(对于大型数据集,建议使用向量数据库)
# imports
import mwclient  # for downloading example Wikipedia articles
import mwparserfromhell  # for splitting Wikipedia articles into sections
from openai import OpenAI  # for generating embeddings
import os  # for environment variables
import pandas as pd  # for DataFrames to store article sections and embeddings
import re  # for cutting <ref> links out of Wikipedia articles
import tiktoken  # for counting tokens

client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY", "<your OpenAI API key if not set as env var>"))

在终端中使用pip install安装任何缺失的库。例如,

pip install openai

(你也可以在笔记本单元格中使用 !pip install openai 来实现。)

如果安装了任何库,请务必重启笔记本内核。

1. 收集文档

在这个示例中,我们将下载数百篇与2022年冬季奥运会相关的维基百科文章。

# get Wikipedia pages about the 2022 Winter Olympics

CATEGORY_TITLE = "Category:2022 Winter Olympics"
WIKI_SITE = "en.wikipedia.org"


def titles_from_category(
    category: mwclient.listing.Category, max_depth: int
) -> set[str]:
    """Return a set of page titles in a given Wiki category and its subcategories."""
    titles = set()
    for cm in category.members():
        if type(cm) == mwclient.page.Page:
            # ^type() used instead of isinstance() to catch match w/ no inheritance
            titles.add(cm.name)
        elif isinstance(cm, mwclient.listing.Category) and max_depth > 0:
            deeper_titles = titles_from_category(cm, max_depth=max_depth - 1)
            titles.update(deeper_titles)
    return titles


site = mwclient.Site(WIKI_SITE)
category_page = site.pages[CATEGORY_TITLE]
titles = titles_from_category(category_page, max_depth=1)
# ^note: max_depth=1 means we go one level deep in the category tree
print(f"Found {len(titles)} article titles in {CATEGORY_TITLE}.")
Found 179 article titles in Category:2022 Winter Olympics.

2. 文档分块

现在我们有了参考文档,需要为搜索做好准备。

由于GPT每次只能读取有限数量的文本,我们将把每个文档分割成足够小的块以便读取。

对于维基百科文章的这个具体示例,我们将:

  • 舍弃相关性较低的部分,例如外部链接和脚注
  • 通过移除引用标签(例如)、空白和超短段落来清理文本
  • 将每篇文章分割成多个部分
  • 在每个章节的文本前添加标题和副标题,以帮助GPT理解上下文
  • 如果某个部分较长(例如超过1600个token),我们会递归地将其分割成更小的部分,尽量按照语义边界(如段落)进行分割
# define functions to split Wikipedia pages into sections

SECTIONS_TO_IGNORE = [
    "See also",
    "References",
    "External links",
    "Further reading",
    "Footnotes",
    "Bibliography",
    "Sources",
    "Citations",
    "Literature",
    "Footnotes",
    "Notes and references",
    "Photo gallery",
    "Works cited",
    "Photos",
    "Gallery",
    "Notes",
    "References and sources",
    "References and notes",
]


def all_subsections_from_section(
    section: mwparserfromhell.wikicode.Wikicode,
    parent_titles: list[str],
    sections_to_ignore: set[str],
) -> list[tuple[list[str], str]]:
    """
    From a Wikipedia section, return a flattened list of all nested subsections.
    Each subsection is a tuple, where:
        - the first element is a list of parent subtitles, starting with the page title
        - the second element is the text of the subsection (but not any children)
    """
    headings = [str(h) for h in section.filter_headings()]
    title = headings[0]
    if title.strip("=" + " ") in sections_to_ignore:
        # ^wiki headings are wrapped like "== Heading =="
        return []
    titles = parent_titles + [title]
    full_text = str(section)
    section_text = full_text.split(title)[1]
    if len(headings) == 1:
        return [(titles, section_text)]
    else:
        first_subtitle = headings[1]
        section_text = section_text.split(first_subtitle)[0]
        results = [(titles, section_text)]
        for subsection in section.get_sections(levels=[len(titles) + 1]):
            results.extend(all_subsections_from_section(subsection, titles, sections_to_ignore))
        return results


def all_subsections_from_title(
    title: str,
    sections_to_ignore: set[str] = SECTIONS_TO_IGNORE,
    site_name: str = WIKI_SITE,
) -> list[tuple[list[str], str]]:
    """From a Wikipedia page title, return a flattened list of all nested subsections.
    Each subsection is a tuple, where:
        - the first element is a list of parent subtitles, starting with the page title
        - the second element is the text of the subsection (but not any children)
    """
    site = mwclient.Site(site_name)
    page = site.pages[title]
    text = page.text()
    parsed_text = mwparserfromhell.parse(text)
    headings = [str(h) for h in parsed_text.filter_headings()]
    if headings:
        summary_text = str(parsed_text).split(headings[0])[0]
    else:
        summary_text = str(parsed_text)
    results = [([title], summary_text)]
    for subsection in parsed_text.get_sections(levels=[2]):
        results.extend(all_subsections_from_section(subsection, [title], sections_to_ignore))
    return results
# split pages into sections
# may take ~1 minute per 100 articles
wikipedia_sections = []
for title in titles:
    wikipedia_sections.extend(all_subsections_from_title(title))
print(f"Found {len(wikipedia_sections)} sections in {len(titles)} pages.")
Found 1838 sections in 179 pages.
# clean text
def clean_section(section: tuple[list[str], str]) -> tuple[list[str], str]:
    """
    Return a cleaned up section with:
        - <ref>xyz</ref> patterns removed
        - leading/trailing whitespace removed
    """
    titles, text = section
    text = re.sub(r"<ref.*?</ref>", "", text)
    text = text.strip()
    return (titles, text)


wikipedia_sections = [clean_section(ws) for ws in wikipedia_sections]

# filter out short/blank sections
def keep_section(section: tuple[list[str], str]) -> bool:
    """Return True if the section should be kept, False otherwise."""
    titles, text = section
    if len(text) < 16:
        return False
    else:
        return True


original_num_sections = len(wikipedia_sections)
wikipedia_sections = [ws for ws in wikipedia_sections if keep_section(ws)]
print(f"Filtered out {original_num_sections-len(wikipedia_sections)} sections, leaving {len(wikipedia_sections)} sections.")
Filtered out 89 sections, leaving 1749 sections.
# print example data
for ws in wikipedia_sections[:5]:
    print(ws[0])
    display(ws[1][:77] + "...")
    print()
['Concerns and controversies at the 2022 Winter Olympics']
'{{Short description|Overview of concerns and controversies surrounding the Ga...'
['Concerns and controversies at the 2022 Winter Olympics', '==Criticism of host selection==']
'American sportscaster [[Bob Costas]] criticized the [[International Olympic C...'
['Concerns and controversies at the 2022 Winter Olympics', '==Organizing concerns and controversies==', '===Cost and climate===']
'Several cities withdrew their applications during [[Bids for the 2022 Winter ...'
['Concerns and controversies at the 2022 Winter Olympics', '==Organizing concerns and controversies==', '===Promotional song===']
'Some commentators alleged that one of the early promotional songs for the [[2...'
['Concerns and controversies at the 2022 Winter Olympics', '== Diplomatic boycotts or non-attendance ==']
'<section begin=boycotts />\n[[File:2022 Winter Olympics (Beijing) diplomatic b...'

接下来,我们将递归地将长段落分割成更小的段落。

将文本分割成段落并没有完美的方案。

一些权衡包括:

  • 对于需要更多上下文的问题,较长的部分可能更合适
  • 较长的段落可能不利于检索,因为它们可能混杂了更多主题
  • 较短的段落有助于降低成本(成本与令牌数量成正比)
  • 较短的段落允许检索更多段落,这可能有助于提高召回率
  • 重叠部分可能有助于防止答案被章节边界截断

这里,我们将采用一种简单的方法,将每个部分限制在1600个token以内,对于过长的部分会递归地将其减半。为了避免在有用的句子中间截断,我们会尽可能在段落边界处进行分割。

GPT_MODEL = "gpt-4o-mini"  # only matters insofar as it selects which tokenizer to use


def num_tokens(text: str, model: str = GPT_MODEL) -> int:
    """Return the number of tokens in a string."""
    encoding = tiktoken.encoding_for_model(model)
    return len(encoding.encode(text))


def halved_by_delimiter(string: str, delimiter: str = "\n") -> list[str, str]:
    """Split a string in two, on a delimiter, trying to balance tokens on each side."""
    chunks = string.split(delimiter)
    if len(chunks) == 1:
        return [string, ""]  # no delimiter found
    elif len(chunks) == 2:
        return chunks  # no need to search for halfway point
    else:
        total_tokens = num_tokens(string)
        halfway = total_tokens // 2
        best_diff = halfway
        for i, chunk in enumerate(chunks):
            left = delimiter.join(chunks[: i + 1])
            left_tokens = num_tokens(left)
            diff = abs(halfway - left_tokens)
            if diff >= best_diff:
                break
            else:
                best_diff = diff
        left = delimiter.join(chunks[:i])
        right = delimiter.join(chunks[i:])
        return [left, right]


def truncated_string(
    string: str,
    model: str,
    max_tokens: int,
    print_warning: bool = True,
) -> str:
    """Truncate a string to a maximum number of tokens."""
    encoding = tiktoken.encoding_for_model(model)
    encoded_string = encoding.encode(string)
    truncated_string = encoding.decode(encoded_string[:max_tokens])
    if print_warning and len(encoded_string) > max_tokens:
        print(f"Warning: Truncated string from {len(encoded_string)} tokens to {max_tokens} tokens.")
    return truncated_string


def split_strings_from_subsection(
    subsection: tuple[list[str], str],
    max_tokens: int = 1000,
    model: str = GPT_MODEL,
    max_recursion: int = 5,
) -> list[str]:
    """
    Split a subsection into a list of subsections, each with no more than max_tokens.
    Each subsection is a tuple of parent titles [H1, H2, ...] and text (str).
    """
    titles, text = subsection
    string = "\n\n".join(titles + [text])
    num_tokens_in_string = num_tokens(string)
    # if length is fine, return string
    if num_tokens_in_string <= max_tokens:
        return [string]
    # if recursion hasn't found a split after X iterations, just truncate
    elif max_recursion == 0:
        return [truncated_string(string, model=model, max_tokens=max_tokens)]
    # otherwise, split in half and recurse
    else:
        titles, text = subsection
        for delimiter in ["\n\n", "\n", ". "]:
            left, right = halved_by_delimiter(text, delimiter=delimiter)
            if left == "" or right == "":
                # if either half is empty, retry with a more fine-grained delimiter
                continue
            else:
                # recurse on each half
                results = []
                for half in [left, right]:
                    half_subsection = (titles, half)
                    half_strings = split_strings_from_subsection(
                        half_subsection,
                        max_tokens=max_tokens,
                        model=model,
                        max_recursion=max_recursion - 1,
                    )
                    results.extend(half_strings)
                return results
    # otherwise no split was found, so just truncate (should be very rare)
    return [truncated_string(string, model=model, max_tokens=max_tokens)]
# split sections into chunks
MAX_TOKENS = 1600
wikipedia_strings = []
for section in wikipedia_sections:
    wikipedia_strings.extend(split_strings_from_subsection(section, max_tokens=MAX_TOKENS))

print(f"{len(wikipedia_sections)} Wikipedia sections split into {len(wikipedia_strings)} strings.")
1749 Wikipedia sections split into 2052 strings.
# print example data
print(wikipedia_strings[1])
Concerns and controversies at the 2022 Winter Olympics

==Criticism of host selection==

American sportscaster [[Bob Costas]] criticized the [[International Olympic Committee]]'s (IOC) decision to award the games to China saying "The IOC deserves all of the disdain and disgust that comes their way for going back to China yet again" referencing China's human rights record.

After winning two gold medals and returning to his home country of Sweden skater [[Nils van der Poel]] criticized the IOC's selection of China as the host saying "I think it is extremely irresponsible to give it to a country that violates human rights as blatantly as the Chinese regime is doing." He had declined to criticize China before leaving for the games saying "I don't think it would be particularly wise for me to criticize the system I'm about to transition to, if I want to live a long and productive life."

3. 嵌入文档片段

现在我们已经将库拆分为更短的自包含字符串,可以为每个字符串计算嵌入。

(对于大型嵌入任务,可以使用类似api_request_parallel_processor.py的脚本来并行处理请求,同时进行限流以保持在速率限制范围内。)

EMBEDDING_MODEL = "text-embedding-3-small"
BATCH_SIZE = 1000  # you can submit up to 2048 embedding inputs per request

embeddings = []
for batch_start in range(0, len(wikipedia_strings), BATCH_SIZE):
    batch_end = batch_start + BATCH_SIZE
    batch = wikipedia_strings[batch_start:batch_end]
    print(f"Batch {batch_start} to {batch_end-1}")
    response = client.embeddings.create(model=EMBEDDING_MODEL, input=batch)
    for i, be in enumerate(response.data):
        assert i == be.index  # double check embeddings are in same order as input
    batch_embeddings = [e.embedding for e in response.data]
    embeddings.extend(batch_embeddings)

df = pd.DataFrame({"text": wikipedia_strings, "embedding": embeddings})
Batch 0 to 999
Batch 1000 to 1999
Batch 2000 to 2999

4. 存储文档片段和嵌入向量

因为这个示例仅使用了数千个字符串,我们将它们存储在CSV文件中。

(对于更大的数据集,请使用向量数据库,性能会更优。)

# save document chunks and embeddings

SAVE_PATH = "data/winter_olympics_2022.csv"

df.to_csv(SAVE_PATH, index=False)