2023年6月14日

如何结合知识库使用函数

,

本笔记本基于argument generation笔记本中的概念,通过创建一个能够访问知识库并根据用户需求调用两个函数的智能体来扩展这些概念。

我们将创建一个智能体,利用arXiv的数据来回答学术问题。它具备两项功能:

  • get_articles: 一个获取arXiv上某主题文章并为用户生成带链接摘要的函数。
  • read_article_and_summarize: 该函数接收一篇之前搜索到的文章,完整阅读后总结其核心论点、证据和结论。

这将帮助您熟悉一个多功能工作流程,该流程可以从多个服务中进行选择,并且第一个函数中的部分数据会被持久化以供第二个函数使用。

操作指南

本指南将带您完成以下工作流程:

  • 搜索工具: 创建两个用于访问arXiv获取答案的函数。
  • 配置智能体:构建智能体的行为,使其能够评估是否需要调用函数,并在需要时调用该函数并将结果返回给智能体。
  • arXiv对话: 将所有内容整合到实时对话中。
!pip install scipy --quiet
!pip install tenacity --quiet
!pip install tiktoken==0.3.3 --quiet
!pip install termcolor --quiet
!pip install openai --quiet
!pip install arxiv --quiet
!pip install pandas --quiet
!pip install PyPDF2 --quiet
!pip install tqdm --quiet
import arxiv
import ast
import concurrent
import json
import os
import pandas as pd
import tiktoken
from csv import writer
from IPython.display import display, Markdown, Latex
from openai import OpenAI
from PyPDF2 import PdfReader
from scipy import spatial
from tenacity import retry, wait_random_exponential, stop_after_attempt
from tqdm import tqdm
from termcolor import colored

GPT_MODEL = "gpt-4o-mini"
EMBEDDING_MODEL = "text-embedding-ada-002"
client = OpenAI()

搜索工具

我们将首先设置一些基础工具,以支持我们的两个函数。

下载的论文将存储在一个目录中(这里我们使用./data/papers)。我们创建了一个文件arxiv_library.csv来存储下载论文的嵌入向量和详细信息,以便使用summarize_text进行检索。

directory = './data/papers'

# Check if the directory already exists
if not os.path.exists(directory):
    # If the directory doesn't exist, create it and any necessary intermediate directories
    os.makedirs(directory)
    print(f"Directory '{directory}' created successfully.")
else:
    # If the directory already exists, print a message indicating it
    print(f"Directory '{directory}' already exists.")
Directory './data/papers' already exists.
# Set a directory to store downloaded papers
data_dir = os.path.join(os.curdir, "data", "papers")
paper_dir_filepath = "./data/papers/arxiv_library.csv"

# Generate a blank dataframe where we can store downloaded files
df = pd.DataFrame(list())
df.to_csv(paper_dir_filepath)
@retry(wait=wait_random_exponential(min=1, max=40), stop=stop_after_attempt(3))
def embedding_request(text):
    response = client.embeddings.create(input=text, model=EMBEDDING_MODEL)
    return response


@retry(wait=wait_random_exponential(min=1, max=40), stop=stop_after_attempt(3))
def get_articles(query, library=paper_dir_filepath, top_k=10):
    """This function gets the top_k articles based on a user's query, sorted by relevance.
    It also downloads the files and stores them in arxiv_library.csv to be retrieved by the read_article_and_summarize.
    """
    client = arxiv.Client()
    search = arxiv.Search(
        query = query,
        max_results = top_k
    )
    result_list = []
    for result in client.results(search):
        result_dict = {}
        result_dict.update({"title": result.title})
        result_dict.update({"summary": result.summary})

        # Taking the first url provided
        result_dict.update({"article_url": [x.href for x in result.links][0]})
        result_dict.update({"pdf_url": [x.href for x in result.links][1]})
        result_list.append(result_dict)

        # Store references in library file
        response = embedding_request(text=result.title)
        file_reference = [
            result.title,
            result.download_pdf(data_dir),
            response.data[0].embedding,
        ]

        # Write to file
        with open(library, "a") as f_object:
            writer_object = writer(f_object)
            writer_object.writerow(file_reference)
            f_object.close()
    return result_list
# Test that the search is working
result_output = get_articles("ppo reinforcement learning")
result_output[0]
{'title': 'Proximal Policy Optimization and its Dynamic Version for Sequence Generation',
 'summary': 'In sequence generation task, many works use policy gradient for model\noptimization to tackle the intractable backpropagation issue when maximizing\nthe non-differentiable evaluation metrics or fooling the discriminator in\nadversarial learning. In this paper, we replace policy gradient with proximal\npolicy optimization (PPO), which is a proved more efficient reinforcement\nlearning algorithm, and propose a dynamic approach for PPO (PPO-dynamic). We\ndemonstrate the efficacy of PPO and PPO-dynamic on conditional sequence\ngeneration tasks including synthetic experiment and chit-chat chatbot. The\nresults show that PPO and PPO-dynamic can beat policy gradient by stability and\nperformance.',
 'article_url': 'http://arxiv.org/abs/1808.07982v1',
 'pdf_url': 'http://arxiv.org/pdf/1808.07982v1'}
def strings_ranked_by_relatedness(
    query: str,
    df: pd.DataFrame,
    relatedness_fn=lambda x, y: 1 - spatial.distance.cosine(x, y),
    top_n: int = 100,
) -> list[str]:
    """Returns a list of strings and relatednesses, sorted from most related to least."""
    query_embedding_response = embedding_request(query)
    query_embedding = query_embedding_response.data[0].embedding
    strings_and_relatednesses = [
        (row["filepath"], relatedness_fn(query_embedding, row["embedding"]))
        for i, row in df.iterrows()
    ]
    strings_and_relatednesses.sort(key=lambda x: x[1], reverse=True)
    strings, relatednesses = zip(*strings_and_relatednesses)
    return strings[:top_n]
def read_pdf(filepath):
    """Takes a filepath to a PDF and returns a string of the PDF's contents"""
    # creating a pdf reader object
    reader = PdfReader(filepath)
    pdf_text = ""
    page_number = 0
    for page in reader.pages:
        page_number += 1
        pdf_text += page.extract_text() + f"\nPage Number: {page_number}"
    return pdf_text


# Split a text into smaller chunks of size n, preferably ending at the end of a sentence
def create_chunks(text, n, tokenizer):
    """Returns successive n-sized chunks from provided text."""
    tokens = tokenizer.encode(text)
    i = 0
    while i < len(tokens):
        # Find the nearest end of sentence within a range of 0.5 * n and 1.5 * n tokens
        j = min(i + int(1.5 * n), len(tokens))
        while j > i + int(0.5 * n):
            # Decode the tokens and check for full stop or newline
            chunk = tokenizer.decode(tokens[i:j])
            if chunk.endswith(".") or chunk.endswith("\n"):
                break
            j -= 1
        # If no end of sentence found, use n tokens as the chunk size
        if j == i + int(0.5 * n):
            j = min(i + n, len(tokens))
        yield tokens[i:j]
        i = j


def extract_chunk(content, template_prompt):
    """This function applies a prompt to some input content. In this case it returns a summarized chunk of text"""
    prompt = template_prompt + content
    response = client.chat.completions.create(
        model=GPT_MODEL, messages=[{"role": "user", "content": prompt}], temperature=0
    )
    return response.choices[0].message.content


def summarize_text(query):
    """This function does the following:
    - Reads in the arxiv_library.csv file in including the embeddings
    - Finds the closest file to the user's query
    - Scrapes the text out of the file and chunks it
    - Summarizes each chunk in parallel
    - Does one final summary and returns this to the user"""

    # A prompt to dictate how the recursive summarizations should approach the input paper
    summary_prompt = """Summarize this text from an academic paper. Extract any key points with reasoning.\n\nContent:"""

    # If the library is empty (no searches have been performed yet), we perform one and download the results
    library_df = pd.read_csv(paper_dir_filepath).reset_index()
    if len(library_df) == 0:
        print("No papers searched yet, downloading first.")
        get_articles(query)
        print("Papers downloaded, continuing")
        library_df = pd.read_csv(paper_dir_filepath).reset_index()
    else:
        print("Existing papers found... Articles:", len(library_df))
    library_df.columns = ["title", "filepath", "embedding"]
    library_df["embedding"] = library_df["embedding"].apply(ast.literal_eval)
    strings = strings_ranked_by_relatedness(query, library_df, top_n=1)
    print("Chunking text from paper")
    pdf_text = read_pdf(strings[0])

    # Initialise tokenizer
    tokenizer = tiktoken.get_encoding("cl100k_base")
    results = ""

    # Chunk up the document into 1500 token chunks
    chunks = create_chunks(pdf_text, 1500, tokenizer)
    text_chunks = [tokenizer.decode(chunk) for chunk in chunks]
    print("Summarizing each chunk of text")

    # Parallel process the summaries
    with concurrent.futures.ThreadPoolExecutor(
        max_workers=len(text_chunks)
    ) as executor:
        futures = [
            executor.submit(extract_chunk, chunk, summary_prompt)
            for chunk in text_chunks
        ]
        with tqdm(total=len(text_chunks)) as pbar:
            for _ in concurrent.futures.as_completed(futures):
                pbar.update(1)
        for future in futures:
            data = future.result()
            results += data

    # Final summary
    print("Summarizing into overall summary")
    response = client.chat.completions.create(
        model=GPT_MODEL,
        messages=[
            {
                "role": "user",
                "content": f"""Write a summary collated from this collection of key points extracted from an academic paper.
                        The summary should highlight the core argument, conclusions and evidence, and answer the user's query.
                        User query: {query}
                        The summary should be structured in bulleted lists following the headings Core Argument, Evidence, and Conclusions.
                        Key points:\n{results}\nSummary:\n""",
            }
        ],
        temperature=0,
    )
    return response
# Test the summarize_text function works
chat_test_response = summarize_text("PPO reinforcement learning sequence generation")
Existing papers found... Articles: 10
Chunking text from paper
Summarizing each chunk of text
100%|███████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:05<00:00,  1.40s/it]
Summarizing into overall summary
display(Markdown(chat_test_response.choices[0].message.content))
<IPython.core.display.Markdown object>

配置智能体

在这一步中,我们将创建我们的智能体,包括一个Conversation类来支持与API的多轮对话,以及一些Python函数来实现ChatCompletion API与我们知识库功能之间的交互。

@retry(wait=wait_random_exponential(min=1, max=40), stop=stop_after_attempt(3))
def chat_completion_request(messages, functions=None, model=GPT_MODEL):
    try:
        response = client.chat.completions.create(
            model=model,
            messages=messages,
            functions=functions,
        )
        return response
    except Exception as e:
        print("Unable to generate ChatCompletion response")
        print(f"Exception: {e}")
        return e
class Conversation:
    def __init__(self):
        self.conversation_history = []

    def add_message(self, role, content):
        message = {"role": role, "content": content}
        self.conversation_history.append(message)

    def display_conversation(self, detailed=False):
        role_to_color = {
            "system": "red",
            "user": "green",
            "assistant": "blue",
            "function": "magenta",
        }
        for message in self.conversation_history:
            print(
                colored(
                    f"{message['role']}: {message['content']}\n\n",
                    role_to_color[message["role"]],
                )
            )
# Initiate our get_articles and read_article_and_summarize functions
arxiv_functions = [
    {
        "name": "get_articles",
        "description": """Use this function to get academic papers from arXiv to answer user questions.""",
        "parameters": {
            "type": "object",
            "properties": {
                "query": {
                    "type": "string",
                    "description": f"""
                            User query in JSON. Responses should be summarized and should include the article URL reference
                            """,
                }
            },
            "required": ["query"],
        },
    },
    {
        "name": "read_article_and_summarize",
        "description": """Use this function to read whole papers and provide a summary for users.
        You should NEVER call this function before get_articles has been called in the conversation.""",
        "parameters": {
            "type": "object",
            "properties": {
                "query": {
                    "type": "string",
                    "description": f"""
                            Description of the article in plain text based on the user's query
                            """,
                }
            },
            "required": ["query"],
        },
    }
]
def chat_completion_with_function_execution(messages, functions=[None]):
    """This function makes a ChatCompletion API call with the option of adding functions"""
    response = chat_completion_request(messages, functions)
    full_message = response.choices[0]
    if full_message.finish_reason == "function_call":
        print(f"Function generation requested, calling function")
        return call_arxiv_function(messages, full_message)
    else:
        print(f"Function not required, responding to user")
        return response


def call_arxiv_function(messages, full_message):
    """Function calling function which executes function calls when the model believes it is necessary.
    Currently extended by adding clauses to this if statement."""

    if full_message.message.function_call.name == "get_articles":
        try:
            parsed_output = json.loads(
                full_message.message.function_call.arguments
            )
            print("Getting search results")
            results = get_articles(parsed_output["query"])
        except Exception as e:
            print(parsed_output)
            print(f"Function execution failed")
            print(f"Error message: {e}")
        messages.append(
            {
                "role": "function",
                "name": full_message.message.function_call.name,
                "content": str(results),
            }
        )
        try:
            print("Got search results, summarizing content")
            response = chat_completion_request(messages)
            return response
        except Exception as e:
            print(type(e))
            raise Exception("Function chat request failed")

    elif (
        full_message.message.function_call.name == "read_article_and_summarize"
    ):
        parsed_output = json.loads(
            full_message.message.function_call.arguments
        )
        print("Finding and reading paper")
        summary = summarize_text(parsed_output["query"])
        return summary

    else:
        raise Exception("Function does not exist and cannot be called")

arXiv对话

让我们通过在对话中测试我们的函数来将所有内容整合起来。

# Start with a system message
paper_system_message = """You are arXivGPT, a helpful assistant pulls academic papers to answer user questions.
You summarize the papers clearly so the customer can decide which to read to answer their question.
You always provide the article_url and title so the user can understand the name of the paper and click through to access it.
Begin!"""
paper_conversation = Conversation()
paper_conversation.add_message("system", paper_system_message)
# Add a user message
paper_conversation.add_message("user", "Hi, how does PPO reinforcement learning work?")
chat_response = chat_completion_with_function_execution(
    paper_conversation.conversation_history, functions=arxiv_functions
)
assistant_message = chat_response.choices[0].message.content
paper_conversation.add_message("assistant", assistant_message)
display(Markdown(assistant_message))
Function generation requested, calling function
Getting search results
Got search results, summarizing content
<IPython.core.display.Markdown object>
# Add another user message to induce our system to use the second tool
paper_conversation.add_message(
    "user",
    "Can you read the PPO sequence generation paper for me and give me a summary",
)
updated_response = chat_completion_with_function_execution(
    paper_conversation.conversation_history, functions=arxiv_functions
)
display(Markdown(updated_response.choices[0].message.content))
Function generation requested, calling function
Finding and reading paper
Existing papers found... Articles: 20
Chunking text from paper
Summarizing each chunk of text
100%|███████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:04<00:00,  1.21s/it]
Summarizing into overall summary
<IPython.core.display.Markdown object>