paddlespeech.t2s.modules.residual_block 模块
- class paddlespeech.t2s.modules.residual_block.HiFiGANResidualBlock(kernel_size: int = 3, channels: int = 512, dilations: List[int] = (1, 3, 5), bias: bool = True, use_additional_convs: bool = True, nonlinear_activation: str = 'leakyrelu', nonlinear_activation_params: Dict[str, Any] = {'negative_slope': 0.1})[来源]
基础:
LayerHiFiGAN中的残差块模块。
方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(x)计算前向传播。 参数: x (Tensor): 输入张量 (B, channels, T)。 返回: Tensor: 输出张量 (B, channels, T)。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子
- class paddlespeech.t2s.modules.residual_block.WaveNetResidualBlock(kernel_size: int = 3, residual_channels: int = 64, gate_channels: int = 128, skip_channels: int = 64, aux_channels: int = 80, dropout: float = 0.0, dilation: int = 1, bias: bool = True, use_causal_conv: bool = False)[来源]
基础:
Layer一个由1D卷积、门控tanh单元和参数化残差及跳跃连接组成的门控激活单元。有关更多细节,请参考 WaveNet: A Generative Model for Raw Audio。
- Args:
- kernel_size (int, optional):
一维卷积的内核大小,默认为3
- residual_channels (int, optional):
残差输出(以及输入)的特征大小,默认值为64
- gate_channels (int, optional):
一维卷积的输出特征大小,默认值为128
- skip_channels (int, optional):
跳过输出的特征大小,默认为 64
- aux_channels (int, optional):
辅助输入的特征大小(例如,谱图),默认为80
- dropout (float, optional):
在一维卷积之前的.dropout概率,默认值为0。
- dilation (int, optional):
默认情况下,1D卷积的扩张为1
- bias (bool, optional):
是否在1D卷积中使用偏差,默认值为True
- use_causal_conv (bool, optional):
是否对1D卷积使用因果填充,默认值为False
方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(x, c)参数:
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子