paddlespeech.t2s.modules.style_encoder模块

GST-Tacotron的风格编码器。

class paddlespeech.t2s.modules.style_encoder.MultiHeadedAttention(q_dim, k_dim, v_dim, n_head, n_feat, dropout_rate=0.0)[来源]

基础: MultiHeadedAttention

具有不同输入维度的多头注意力模块。

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(query, key, value[, mask])

计算缩放点积注意力。

forward_attention(value, scores[, mask])

计算注意力上下文向量。

forward_qkv(query, key, value)

转换查询、键和值。

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

class paddlespeech.t2s.modules.style_encoder.ReferenceEncoder(idim=80, conv_layers: int = 6, conv_chans_list: Sequence[int] = (32, 32, 64, 64, 128, 128), conv_kernel_size: int = 3, conv_stride: int = 2, gru_layers: int = 1, gru_units: int = 128)[来源]

基础: Layer

参考编码器模块。

该模块是参考编码器,介绍于风格标记:无监督风格建模、控制和端到端语音合成中的转移

Args:
idim (int, optional):

输入梅尔谱的维度。

conv_layers (int, optional):

参考编码器中的卷积层数量。

conv_chans_list: (Sequence[int], optional):

参考编码器中卷积层的通道数量列表。

conv_kernel_size (int, optional):

参考编码器中卷积层的核大小。

conv_stride (int, optional):

参考编码器中卷积层的步幅大小。

gru_layers (int, optional):

参考编码器中GRU层的数量。

gru_units (int, optional):

参考编码器中的GRU单元数量。

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(speech)

计算前向传播。 参数: speech (Tensor): 填充目标特征的批次 (B, Lmax, idim)。

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

forward(speech: Tensor) Tensor[来源]

计算前向传播。 参数:

speech (Tensor):

填充目标特征的批次 (B, Lmax, idim)。

Returns:

张量:参考嵌入 (B, gru_units)

class paddlespeech.t2s.modules.style_encoder.StyleEncoder(idim: int = 80, gst_tokens: int = 10, gst_token_dim: int = 256, gst_heads: int = 4, conv_layers: int = 6, conv_chans_list: Sequence[int] = (32, 32, 64, 64, 128, 128), conv_kernel_size: int = 3, conv_stride: int = 2, gru_layers: int = 1, gru_units: int = 128)[来源]

基础: Layer

样式编码器。

该模块是在风格标记:未经监督的风格建模、控制和端到端语音合成中的转移中提出的样式编码器。

Args:
idim (int, optional):

输入梅尔谱的维度。

gst_tokens (int, optional):

GST嵌入的数量。

gst_token_dim (int, optional):

每个GST嵌入的维度。

gst_heads (int, optional):

GST多头注意力中的头数。

conv_layers (int, optional):

参考编码器中的卷积层数量。

conv_chans_list (Sequence[int], optional):

参考编码器中卷积层的通道数量列表。

conv_kernel_size (int, optional):

参考编码器中卷积层的核大小。

conv_stride (int, optional):

参考编码器中卷积层的步幅大小。

gru_layers (int, optional):

参考编码器中GRU层的数量。

gru_units (int, optional):

参考编码器中的GRU单元数量。

Todo:
  • 支持在推理中手动指定权重。

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(speech)

计算前向传播。

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

forward(speech: Tensor) Tensor[来源]

计算前向传播。

Args:
speech (Tensor):

填充目标特征的批次 (B, Lmax, odim)。

Returns:

张量:样式标记嵌入 (B, token_dim)。

class paddlespeech.t2s.modules.style_encoder.StyleTokenLayer(ref_embed_dim: int = 128, gst_tokens: int = 10, gst_token_dim: int = 256, gst_heads: int = 4, dropout_rate: float = 0.0)[来源]

基础: Layer

样式令牌层模块。

此模块是样式令牌层,介绍于 样式令牌:无监督样式建模、控制与端到端语音合成中的转移

Args:
ref_embed_dim (int, optional):

输入参考嵌入的维度。

gst_tokens (int, optional):

GST嵌入的数量。

gst_token_dim (int, optional):

每个GST嵌入的维度。

gst_heads (int, optional):

GST多头注意力中的头数。

dropout_rate (float, optional):

多头注意力中的丢弃率。

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(ref_embs)

计算前向传播。

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

forward(ref_embs: Tensor) Tensor[来源]

计算前向传播。

Args:
ref_embs (Tensor):

参考嵌入 (B, ref_embed_dim).

Returns:

张量:风格令牌嵌入 (B, gst_token_dim)。