paddlespeech.vector.modules.loss 模块
- class paddlespeech.vector.modules.loss.AdditiveAngularMargin(margin=0.0, scale=1.0, easy_margin=False)[来源]
基础:
AngularMargin方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(outputs, targets)定义每次调用时执行的计算。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子
- class paddlespeech.vector.modules.loss.AngularMargin(margin=0.0, scale=1.0)[来源]
基础:
Layer方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(outputs, targets)定义在每次调用时执行的计算。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子
- class paddlespeech.vector.modules.loss.FocalLoss(alpha=1, gamma=0, size_average=True, ignore_index=-100)[来源]
基础:
Layer这个标准是Focal Loss的实现,Focal Loss是为密集目标检测提出的。
损失(x, 类别) = - lpha (1-softmax(x)[类别])^gamma log(softmax(x)[类别])
损失值是针对每个小批量的观察结果进行平均的。
- Args:
alpha(1D Tensor, Variable) : 该标准的标量因子
gamma(float, double) : gamma > 0; 减少对于分类良好的样本(p > .5)的相对损失,更加关注困难的、错误分类的示例
- size_average(bool): By default, the losses are averaged over observations for each minibatch.
然而,如果字段 size_average 被设置为 False,则损失将对于每个小批量进行求和。
方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(outputs, targets)向前推断。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子
- class paddlespeech.vector.modules.loss.GE2ELoss(init_w=10.0, init_b=-5.0, loss_method='softmax')[来源]
基础:
Layer在论文《用于说话人验证的广义端到端损失》中定义的广义端到端损失
方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
cal_contrast_loss(cossims)计算对比损失
cal_softmax_loss(cossims)计算softmax损失
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(output, target)前向推理
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
get_cossim(embeddings_list, centroids)计算每个说话者的余弦相似度
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子
- class paddlespeech.vector.modules.loss.LogSoftmaxWrapper(loss_fn)[来源]
基础:
Layer方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(outputs, targets[, length])定义每次调用时执行的计算。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子
- class paddlespeech.vector.modules.loss.NCELoss(Q, noise_ratio=100, Z_offset=9.5)[来源]
基础:
Layer噪声对比估计损失函数
噪声对比估计(NCE)是一种近似方法,用于解决大型softmax层的巨大计算成本。基本思想是在训练阶段将预测问题转换为分类问题。已证明,只要噪声分布足够接近真实分布,这两个标准就会收敛到相同的最小点。
NCE弥补了生成模型和判别模型之间的差距,而不仅仅是加速softmax层。 使用NCE,您可以更轻松地将几乎任何东西转化为后验分布(我认为)。
参考文献: NCE:http://www.cs.helsinki.fi/u/ahyvarin/papers/Gutmann10AISTATS.pdf 感谢:https://github.com/mingen-pan/easy-to-use-NCE-RNN-for-Pytorch/blob/master/nce.py
示例: Q = Q_from_tokens(output_dim) NCELoss(Q)
方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(output, target)前向推理
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
get_Q(idx[, sep_target])获取批量数据的先前模型
get_combined_idx(target_idx, noise_idx)组合目标和噪声
get_noise(batch_size[, uniform])选择噪声样本
get_prob(idx, scores[, sep_target])对批次数据的后模型分数(神经网络的输出)进行后处理
get_scores(idx, scores)获取批量数据的帖子模型(神经网络输出)的分数
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
nce_loss(prob_model, prob_noise_in_model, ...)组合目标和噪声的损失
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子