"""
Methods that can be shared by many array-like classes or subclasses:
    Series
    Index
    ExtensionArray
"""
from __future__ import annotations
import operator
from typing import Any
import numpy as np
from pandas._libs import lib
from pandas._libs.ops_dispatch import maybe_dispatch_ufunc_to_dunder_op
from pandas.core.dtypes.generic import ABCNDFrame
from pandas.core import roperator
from pandas.core.construction import extract_array
from pandas.core.ops.common import unpack_zerodim_and_defer
REDUCTION_ALIASES = {
    "maximum": "max",
    "minimum": "min",
    "add": "sum",
    "multiply": "prod",
}
class OpsMixin:
    # -------------------------------------------------------------
    # Comparisons
    def _cmp_method(self, other, op):
        return NotImplemented
    @unpack_zerodim_and_defer("__eq__")
    def __eq__(self, other):
        return self._cmp_method(other, operator.eq)
    @unpack_zerodim_and_defer("__ne__")
    def __ne__(self, other):
        return self._cmp_method(other, operator.ne)
    @unpack_zerodim_and_defer("__lt__")
    def __lt__(self, other):
        return self._cmp_method(other, operator.lt)
    @unpack_zerodim_and_defer("__le__")
    def __le__(self, other):
        return self._cmp_method(other, operator.le)
    @unpack_zerodim_and_defer("__gt__")
    def __gt__(self, other):
        return self._cmp_method(other, operator.gt)
    @unpack_zerodim_and_defer("__ge__")
    def __ge__(self, other):
        return self._cmp_method(other, operator.ge)
    # -------------------------------------------------------------
    # Logical Methods
    def _logical_method(self, other, op):
        return NotImplemented
    @unpack_zerodim_and_defer("__and__")
    def __and__(self, other):
        return self._logical_method(other, operator.and_)
    @unpack_zerodim_and_defer("__rand__")
    def __rand__(self, other):
        return self._logical_method(other, roperator.rand_)
    @unpack_zerodim_and_defer("__or__")
    def __or__(self, other):
        return self._logical_method(other, operator.or_)
    @unpack_zerodim_and_defer("__ror__")
    def __ror__(self, other):
        return self._logical_method(other, roperator.ror_)
    @unpack_zerodim_and_defer("__xor__")
    def __xor__(self, other):
        return self._logical_method(other, operator.xor)
    @unpack_zerodim_and_defer("__rxor__")
    def __rxor__(self, other):
        return self._logical_method(other, roperator.rxor)
    # -------------------------------------------------------------
    # Arithmetic Methods
    def _arith_method(self, other, op):
        return NotImplemented
    @unpack_zerodim_and_defer("__add__")
    def __add__(self, other):
        """
        Get Addition of DataFrame and other, column-wise.
        Equivalent to ``DataFrame.add(other)``.
        Parameters
        ----------
        other : scalar, sequence, Series, dict or DataFrame
            Object to be added to the DataFrame.
        Returns
        -------
        DataFrame
            The result of adding ``other`` to DataFrame.
        See Also
        --------
        DataFrame.add : Add a DataFrame and another object, with option for index-
            or column-oriented addition.
        Examples
        --------
        >>> df = pd.DataFrame(
        ...     {"height": [1.5, 2.6], "weight": [500, 800]}, index=["elk", "moose"]
        ... )
        >>> df
               height  weight
        elk       1.5     500
        moose     2.6     800
        Adding a scalar affects all rows and columns.
        >>> df[["height", "weight"]] + 1.5
               height  weight
        elk       3.0   501.5
        moose     4.1   801.5
        Each element of a list is added to a column of the DataFrame, in order.
        >>> df[["height", "weight"]] + [0.5, 1.5]
               height  weight
        elk       2.0   501.5
        moose     3.1   801.5
        Keys of a dictionary are aligned to the DataFrame, based on column names;
        each value in the dictionary is added to the corresponding column.
        >>> df[["height", "weight"]] + {"height": 0.5, "weight": 1.5}
               height  weight
        elk       2.0   501.5
        moose     3.1   801.5
        When `other` is a :class:`Series`, the index of `other` is aligned with the
        columns of the DataFrame.
        >>> s1 = pd.Series([0.5, 1.5], index=["weight", "height"])
        >>> df[["height", "weight"]] + s1
               height  weight
        elk       3.0   500.5
        moose     4.1   800.5
        Even when the index of `other` is the same as the index of the DataFrame,
        the :class:`Series` will not be reoriented. If index-wise alignment is desired,
        :meth:`DataFrame.add` should be used with `axis='index'`.
        >>> s2 = pd.Series([0.5, 1.5], index=["elk", "moose"])
        >>> df[["height", "weight"]] + s2
               elk  height  moose  weight
        elk    NaN     NaN    NaN     NaN
        moose  NaN     NaN    NaN     NaN
        >>> df[["height", "weight"]].add(s2, axis="index")
               height  weight
        elk       2.0   500.5
        moose     4.1   801.5
        When `other` is a :class:`DataFrame`, both columns names and the
        index are aligned.
        >>> other = pd.DataFrame(
        ...     {"height": [0.2, 0.4, 0.6]}, index=["elk", "moose", "deer"]
        ... )
        >>> df[["height", "weight"]] + other
               height  weight
        deer      NaN     NaN
        elk       1.7     NaN
        moose     3.0     NaN
        """
        return self._arith_method(other, operator.add)
    @unpack_zerodim_and_defer("__radd__")
    def __radd__(self, other):
        return self._arith_method(other, roperator.radd)
    @unpack_zerodim_and_defer("__sub__")
    def __sub__(self, other):
        return self._arith_method(other, operator.sub)
    @unpack_zerodim_and_defer("__rsub__")
    def __rsub__(self, other):
        return self._arith_method(other, roperator.rsub)
    @unpack_zerodim_and_defer("__mul__")
    def __mul__(self, other):
        return self._arith_method(other, operator.mul)
    @unpack_zerodim_and_defer("__rmul__")
    def __rmul__(self, other):
        return self._arith_method(other, roperator.rmul)
    @unpack_zerodim_and_defer("__truediv__")
    def __truediv__(self, other):
        return self._arith_method(other, operator.truediv)
    @unpack_zerodim_and_defer("__rtruediv__")
    def __rtruediv__(self, other):
        return self._arith_method(other, roperator.rtruediv)
    @unpack_zerodim_and_defer("__floordiv__")
    def __floordiv__(self, other):
        return self._arith_method(other, operator.floordiv)
    @unpack_zerodim_and_defer("__rfloordiv")
    def __rfloordiv__(self, other):
        return self._arith_method(other, roperator.rfloordiv)
    @unpack_zerodim_and_defer("__mod__")
    def __mod__(self, other):
        return self._arith_method(other, operator.mod)
    @unpack_zerodim_and_defer("__rmod__")
    def __rmod__(self, other):
        return self._arith_method(other, roperator.rmod)
    @unpack_zerodim_and_defer("__divmod__")
    def __divmod__(self, other):
        return self._arith_method(other, divmod)
    @unpack_zerodim_and_defer("__rdivmod__")
    def __rdivmod__(self, other):
        return self._arith_method(other, roperator.rdivmod)
    @unpack_zerodim_and_defer("__pow__")
    def __pow__(self, other):
        return self._arith_method(other, operator.pow)
    @unpack_zerodim_and_defer("__rpow__")
    def __rpow__(self, other):
        return self._arith_method(other, roperator.rpow)
# -----------------------------------------------------------------------------
# Helpers to implement __array_ufunc__
def array_ufunc(self, ufunc: np.ufunc, method: str, *inputs: Any, **kwargs: Any):
    """
    Compatibility with numpy ufuncs.
    See also
    --------
    numpy.org/doc/stable/reference/arrays.classes.html#numpy.class.__array_ufunc__
    """
    from pandas.core.frame import (
        DataFrame,
        Series,
    )
    from pandas.core.generic import NDFrame
    from pandas.core.internals import BlockManager
    cls = type(self)
    kwargs = _standardize_out_kwarg(**kwargs)
    # for binary ops, use our custom dunder methods
    result = maybe_dispatch_ufunc_to_dunder_op(self, ufunc, method, *inputs, **kwargs)
    if result is not NotImplemented:
        return result
    # Determine if we should defer.
    no_defer = (
        np.ndarray.__array_ufunc__,
        cls.__array_ufunc__,
    )
    for item in inputs:
        higher_priority = (
            hasattr(item, "__array_priority__")
            and item.__array_priority__ > self.__array_priority__
        )
        has_array_ufunc = (
            hasattr(item, "__array_ufunc__")
            and type(item).__array_ufunc__ not in no_defer
            and not isinstance(item, self._HANDLED_TYPES)
        )
        if higher_priority or has_array_ufunc:
            return NotImplemented
    # align all the inputs.
    types = tuple(type(x) for x in inputs)
    alignable = [x for x, t in zip(inputs, types) if issubclass(t, NDFrame)]
    if len(alignable) > 1:
        # This triggers alignment.
        # At the moment, there aren't any ufuncs with more than two inputs
        # so this ends up just being x1.index | x2.index, but we write
        # it to handle *args.
        set_types = set(types)
        if len(set_types) > 1 and {DataFrame, Series}.issubset(set_types):
            # We currently don't handle ufunc(DataFrame, Series)
            # well. Previously this raised an internal ValueError. We might
            # support it someday, so raise a NotImplementedError.
            raise NotImplementedError(
                f"Cannot apply ufunc {ufunc} to mixed DataFrame and Series inputs."
            )
        axes = self.axes
        for obj in alignable[1:]:
            # this relies on the fact that we aren't handling mixed
            # series / frame ufuncs.
            for i, (ax1, ax2) in enumerate(zip(axes, obj.axes)):
                axes[i] = ax1.union(ax2)
        reconstruct_axes = dict(zip(self._AXIS_ORDERS, axes))
        inputs = tuple(
            x.reindex(**reconstruct_axes) if issubclass(t, NDFrame) else x
            for x, t in zip(inputs, types)
        )
    else:
        reconstruct_axes = dict(zip(self._AXIS_ORDERS, self.axes))
    if self.ndim == 1:
        names = {getattr(x, "name") for x in inputs if hasattr(x, "name")}
        name = names.pop() if len(names) == 1 else None
        reconstruct_kwargs = {"name": name}
    else:
        reconstruct_kwargs = {}
    def reconstruct(result):
        if ufunc.nout > 1:
            # np.modf, np.frexp, np.divmod
            return tuple(_reconstruct(x) for x in result)
        return _reconstruct(result)
    def _reconstruct(result):
        if lib.is_scalar(result):
            return result
        if result.ndim != self.ndim:
            if method == "outer":
                raise NotImplementedError
            return result
        if isinstance(result, BlockManager):
            # we went through BlockManager.apply e.g. np.sqrt
            result = self._constructor_from_mgr(result, axes=result.axes)
        else:
            # we converted an array, lost our axes
            result = self._constructor(
                result, **reconstruct_axes, **reconstruct_kwargs, copy=False
            )
        # TODO: When we support multiple values in __finalize__, this
        # should pass alignable to `__finalize__` instead of self.
        # Then `np.add(a, b)` would consider attrs from both a and b
        # when a and b are NDFrames.
        if len(alignable) == 1:
            result = result.__finalize__(self)
        return result
    if "out" in kwargs:
        # e.g. test_multiindex_get_loc
        result = dispatch_ufunc_with_out(self, ufunc, method, *inputs, **kwargs)
        return reconstruct(result)
    if method == "reduce":
        # e.g. test.series.test_ufunc.test_reduce
        result = dispatch_reduction_ufunc(self, ufunc, method, *inputs, **kwargs)
        if result is not NotImplemented:
            return result
    # We still get here with kwargs `axis` for e.g. np.maximum.accumulate
    #  and `dtype` and `keepdims` for np.ptp
    if self.ndim > 1 and (len(inputs) > 1 or ufunc.nout > 1):
        # Just give up on preserving types in the complex case.
        # In theory we could preserve them for them.
        # * nout>1 is doable if BlockManager.apply took nout and
        #   returned a Tuple[BlockManager].
        # * len(inputs) > 1 is doable when we know that we have
        #   aligned blocks / dtypes.
        # e.g. my_ufunc, modf, logaddexp, heaviside, subtract, add
        inputs = tuple(np.asarray(x) for x in inputs)
        # Note: we can't use default_array_ufunc here bc reindexing means
        #  that `self` may not be among `inputs`
        result = getattr(ufunc, method)(*inputs, **kwargs)
    elif self.ndim == 1:
        # ufunc(series, ...)
        inputs = tuple(extract_array(x, extract_numpy=True) for x in inputs)
        result = getattr(ufunc, method)(*inputs, **kwargs)
    else:
        # ufunc(dataframe)
        if method == "__call__" and not kwargs:
            # for np.<ufunc>(..) calls
            # kwargs cannot necessarily be handled block-by-block, so only
            # take this path if there are no kwargs
            mgr = inputs[0]._mgr
            result = mgr.apply(getattr(ufunc, method))
        else:
            # otherwise specific ufunc methods (eg np.<ufunc>.accumulate(..))
            # Those can have an axis keyword and thus can't be called block-by-block
            result = default_array_ufunc(inputs[0], ufunc, method, *inputs, **kwargs)
            # e.g. np.negative (only one reached), with "where" and "out" in kwargs
    result = reconstruct(result)
    return result
def _standardize_out_kwarg(**kwargs) -> dict:
    """
    If kwargs contain "out1" and "out2", replace that with a tuple "out"
    np.divmod, np.modf, np.frexp can have either `out=(out1, out2)` or
    `out1=out1, out2=out2)`
    """
    if "out" not in kwargs and "out1" in kwargs and "out2" in kwargs:
        out1 = kwargs.pop("out1")
        out2 = kwargs.pop("out2")
        out = (out1, out2)
        kwargs["out"] = out
    return kwargs
def dispatch_ufunc_with_out(self, ufunc: np.ufunc, method: str, *inputs, **kwargs):
    """
    If we have an `out` keyword, then call the ufunc without `out` and then
    set the result into the given `out`.
    """
    # Note: we assume _standardize_out_kwarg has already been called.
    out = kwargs.pop("out")
    where = kwargs.pop("where", None)
    result = getattr(ufunc, method)(*inputs, **kwargs)
    if result is NotImplemented:
        return NotImplemented
    if isinstance(result, tuple):
        # i.e. np.divmod, np.modf, np.frexp
        if not isinstance(out, tuple) or len(out) != len(result):
            raise NotImplementedError
        for arr, res in zip(out, result):
            _assign_where(arr, res, where)
        return out
    if isinstance(out, tuple):
        if len(out) == 1:
            out = out[0]
        else:
            raise NotImplementedError
    _assign_where(out, result, where)
    return out
def _assign_where(out, result, where) -> None:
    """
    Set a ufunc result into 'out', masking with a 'where' argument if necessary.
    """
    if where is None:
        # no 'where' arg passed to ufunc
        out[:] = result
    else:
        np.putmask(out, where, result)
def default_array_ufunc(self, ufunc: np.ufunc, method: str, *inputs, **kwargs):
    """
    Fallback to the behavior we would get if we did not define __array_ufunc__.
    Notes
    -----
    We are assuming that `self` is among `inputs`.
    """
    if not any(x is self for x in inputs):
        raise NotImplementedError
    new_inputs = [x if x is not self else np.asarray(x) for x in inputs]
    return getattr(ufunc, method)(*new_inputs, **kwargs)
def dispatch_reduction_ufunc(self, ufunc: np.ufunc, method: str, *inputs, **kwargs):
    """
    Dispatch ufunc reductions to self's reduction methods.
    """
    assert method == "reduce"
    if len(inputs) != 1 or inputs[0] is not self:
        return NotImplemented
    if ufunc.__name__ not in REDUCTION_ALIASES:
        return NotImplemented
    method_name = REDUCTION_ALIASES[ufunc.__name__]
    # NB: we are assuming that min/max represent minimum/maximum methods,
    #  which would not be accurate for e.g. Timestamp.min
    if not hasattr(self, method_name):
        return NotImplemented
    if self.ndim > 1:
        if isinstance(self, ABCNDFrame):
            # TODO: test cases where this doesn't hold, i.e. 2D DTA/TDA
            kwargs["numeric_only"] = False
        if "axis" not in kwargs:
            # For DataFrame reductions we don't want the default axis=0
            # Note: np.min is not a ufunc, but uses array_function_dispatch,
            #  so calls DataFrame.min (without ever getting here) with the np.min
            #  default of axis=None, which DataFrame.min catches and changes to axis=0.
            # np.minimum.reduce(df) gets here bc axis is not in kwargs,
            #  so we set axis=0 to match the behaviorof np.minimum.reduce(df.values)
            kwargs["axis"] = 0
    # By default, numpy's reductions do not skip NaNs, so we have to
    #  pass skipna=False
    return getattr(self, method_name)(skipna=False, **kwargs)