torch_geometric.data.lightning.LightningLinkData
- class LightningLinkData(data: Union[Data, HeteroData], input_train_edges: Union[Tensor, None, Tuple[str, str, str], Tuple[Tuple[str, str, str], Optional[Tensor]]] = None, input_train_labels: Optional[Tensor] = None, input_train_time: Optional[Tensor] = None, input_val_edges: Union[Tensor, None, Tuple[str, str, str], Tuple[Tuple[str, str, str], Optional[Tensor]]] = None, input_val_labels: Optional[Tensor] = None, input_val_time: Optional[Tensor] = None, input_test_edges: Union[Tensor, None, Tuple[str, str, str], Tuple[Tuple[str, str, str], Optional[Tensor]]] = None, input_test_labels: Optional[Tensor] = None, input_test_time: Optional[Tensor] = None, input_pred_edges: Union[Tensor, None, Tuple[str, str, str], Tuple[Tuple[str, str, str], Optional[Tensor]]] = None, input_pred_labels: Optional[Tensor] = None, input_pred_time: Optional[Tensor] = None, loader: str = 'neighbor', link_sampler: Optional[BaseSampler] = None, eval_loader_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Any)[source]
Bases:
LightningData将
Data或HeteroData对象转换为pytorch_lightning.LightningDataModule变体。然后它可以 自动用作通过 PyTorch Lightning进行多GPU链接级训练的datamodule。LightningDataset将通过LinkNeighborLoader负责提供小批量数据。注意
Currently only the
pytorch_lightning.strategies.SingleDeviceStrategyandpytorch_lightning.strategies.DDPStrategytraining strategies of PyTorch Lightning are supported in order to correctly share data across all devices/processes:import pytorch_lightning as pl trainer = pl.Trainer(strategy="ddp_spawn", accelerator="gpu", devices=4) trainer.fit(model, datamodule)
- Parameters:
data (Data 或 HeteroData 或 Tuple[FeatureStore, GraphStore]) –
Data或HeteroData图对象,或FeatureStore和GraphStore对象的元组。input_train_edges (Tensor 或 EdgeType 或 Tuple[EdgeType, Tensor]) – 训练边。 (默认:
None)input_train_labels (torch.Tensor, optional) – 训练边的标签。(默认:
None)input_train_time (torch.Tensor, optional) – 训练边的时间戳。(默认值:
None)input_val_edges (Tensor 或 EdgeType 或 Tuple[EdgeType, Tensor]) – 验证边。(默认值:
None)input_val_labels (torch.Tensor, optional) – 验证边的标签。(默认值:
None)input_val_time (torch.Tensor, optional) – The timestamp of validation edges. (default:
None)input_test_edges (Tensor 或 EdgeType 或 Tuple[EdgeType, Tensor]) – 测试边。 (默认:
None)input_test_labels (torch.Tensor, optional) – 测试边的标签。(默认值:
None)input_test_time (torch.Tensor, optional) – 测试边的时间戳。(默认值:
None)input_pred_edges (Tensor 或 EdgeType 或 Tuple[EdgeType, Tensor]) – 预测边。 (默认:
None)input_pred_labels (torch.Tensor, optional) – 预测边的标签。(默认值:
None)input_pred_time (torch.Tensor, optional) – 预测边的时间戳。(默认值:
None)loader (str) – The scalability technique to use (
"full","neighbor"). (default:"neighbor")link_sampler (BaseSampler, optional) – 一个自定义的采样器对象,用于生成小批量数据。如果设置了,将忽略
loader选项。(默认值:None)eval_loader_kwargs (Dict[str, Any], optional) – 自定义关键字参数 用于覆盖
torch_geometric.loader.LinkNeighborLoader配置 在评估期间。(默认值:None)**kwargs (可选) –
torch_geometric.loader.LinkNeighborLoader的附加参数。