torch_geometric.nn.aggr.AttentionalAggregation
- class AttentionalAggregation(gate_nn: Module, nn: Optional[Module] = None)[source]
Bases:
Aggregation来自“Graph Matching Networks for Learning the Similarity of Graph Structured Objects”论文的软注意力聚合层。
\[\mathbf{r}_i = \sum_{n=1}^{N_i} \mathrm{softmax} \left( h_{\mathrm{gate}} ( \mathbf{x}_n ) \right) \cdot h_{\mathbf{\Theta}} ( \mathbf{x}_n ),\]其中 \(h_{\mathrm{gate}} \colon \mathbb{R}^F \to \mathbb{R}\) 和 \(h_{\mathbf{\Theta}}\) 表示神经网络,即 多层感知机(MLPs)。
- Parameters:
gate_nn (torch.nn.Module) – 一个神经网络 \(h_{\mathrm{gate}}\) 通过将节点特征
x从形状[-1, in_channels]映射到形状[-1, 1](用于节点级门控)或[1, out_channels](用于特征级门控)来计算注意力分数,例如,由torch.nn.Sequential定义。nn (torch.nn.Module, optional) – 一个神经网络 \(h_{\mathbf{\Theta}}\),它将节点特征
x从形状[-1, in_channels]映射到形状[-1, out_channels], 然后在与注意力分数结合之前,例如,由torch.nn.Sequential定义。(默认值:None)
- forward(x: Tensor, index: Optional[Tensor] = None, ptr: Optional[Tensor] = None, dim_size: Optional[int] = None, dim: int = -2) Tensor[source]
前向传播。
- Parameters:
x (torch.Tensor) – The source tensor.
index (torch.Tensor, optional) – The indices of elements for applying the aggregation. One of
indexorptrmust be defined. (default:None)ptr (torch.Tensor, optional) – If given, computes the aggregation based on sorted inputs in CSR representation. One of
indexorptrmust be defined. (default:None)dim_size (int, optional) – The size of the output tensor at dimension
dimafter aggregation. (default:None)dim (int, optional) – The dimension in which to aggregate. (default:
-2)max_num_elements – (int, optional): The maximum number of elements within a single aggregation group. (default:
None)
- Return type: