torch_geometric.nn.aggr.MLPAggregation
- class MLPAggregation(in_channels: int, out_channels: int, max_num_elements: int, **kwargs)[source]
Bases:
Aggregation执行MLP聚合,其中要聚合的元素被展平为单个向量表示,然后通过多层感知器(MLP)进行处理,如“具有自适应读数的图神经网络”论文中所述。
注意
MLPAggregation需要排序后的索引index作为输入。 具体来说,如果你将此聚合作为MessagePassing的一部分使用,请确保edge_index按目标节点排序,可以通过手动 使用sort_edge_index()排序边索引 或调用torch_geometric.data.Data.sort()来实现。警告
MLPAggregation不是一个排列不变的运算符。- Parameters:
in_channels (int) – Size of each input sample.
out_channels (int) – Size of each output sample.
max_num_elements (int) – 每个组中要聚合的最大元素数量。
**kwargs (可选) –
torch_geometric.nn.models.MLP的额外参数。
- forward(x: Tensor, index: Optional[Tensor] = None, ptr: Optional[Tensor] = None, dim_size: Optional[int] = None, dim: int = -2) Tensor[source]
前向传播。
- Parameters:
x (torch.Tensor) – The source tensor.
index (torch.Tensor, optional) – The indices of elements for applying the aggregation. One of
indexorptrmust be defined. (default:None)ptr (torch.Tensor, optional) – If given, computes the aggregation based on sorted inputs in CSR representation. One of
indexorptrmust be defined. (default:None)dim_size (int, optional) – The size of the output tensor at dimension
dimafter aggregation. (default:None)dim (int, optional) – The dimension in which to aggregate. (default:
-2)max_num_elements – (int, optional): The maximum number of elements within a single aggregation group. (default:
None)
- Return type: