torch_geometric.nn.aggr.PowerMeanAggregation
- class PowerMeanAggregation(p: float = 1.0, learn: bool = False, channels: int = 1)[source]
Bases:
Aggregation基于幂项的幂均值聚合操作符,如“DeeperGCN: All You Need to Train Deeper GCNs”论文中所述。
\[\mathrm{powermean}(\mathcal{X}|p) = \left(\frac{1}{|\mathcal{X}|} \sum_{\mathbf{x}_i\in\mathcal{X}}\mathbf{x}_i^{p}\right)^{1/p},\]其中 \(p\) 控制在聚合一组特征 \(\mathcal{X}\) 时 powermean 的幂次。
- Parameters:
- forward(x: Tensor, index: Optional[Tensor] = None, ptr: Optional[Tensor] = None, dim_size: Optional[int] = None, dim: int = -2) Tensor[source]
前向传播。
- Parameters:
x (torch.Tensor) – The source tensor.
index (torch.Tensor, optional) – The indices of elements for applying the aggregation. One of
indexorptrmust be defined. (default:None)ptr (torch.Tensor, optional) – If given, computes the aggregation based on sorted inputs in CSR representation. One of
indexorptrmust be defined. (default:None)dim_size (int, optional) – The size of the output tensor at dimension
dimafter aggregation. (default:None)dim (int, optional) – The dimension in which to aggregate. (default:
-2)max_num_elements – (int, optional): The maximum number of elements within a single aggregation group. (default:
None)
- Return type: