torch_geometric.nn.aggr.Set2Set
- class Set2Set(in_channels: int, processing_steps: int, **kwargs)[source]
Bases:
Aggregation基于迭代内容注意力的Set2Set聚合操作符,如“顺序重要:集合的序列到序列”论文中所述。
\[ \begin{align}\begin{aligned}\mathbf{q}_t &= \mathrm{LSTM}(\mathbf{q}^{*}_{t-1})\\\alpha_{i,t} &= \mathrm{softmax}(\mathbf{x}_i \cdot \mathbf{q}_t)\\\mathbf{r}_t &= \sum_{i=1}^N \alpha_{i,t} \mathbf{x}_i\\\mathbf{q}^{*}_t &= \mathbf{q}_t \, \Vert \, \mathbf{r}_t,\end{aligned}\end{align} \]其中 \(\mathbf{q}^{*}_T\) 定义了该层的输出,其维度是输入的两倍。
- Parameters:
in_channels (int) – Size of each input sample.
processing_steps (int) – 迭代次数 \(T\).
**kwargs (optional) – Additional arguments of
torch.nn.LSTM.
- forward(x: Tensor, index: Optional[Tensor] = None, ptr: Optional[Tensor] = None, dim_size: Optional[int] = None, dim: int = -2) Tensor[source]
前向传播。
- Parameters:
x (torch.Tensor) – The source tensor.
index (torch.Tensor, optional) – The indices of elements for applying the aggregation. One of
indexorptrmust be defined. (default:None)ptr (torch.Tensor, optional) – If given, computes the aggregation based on sorted inputs in CSR representation. One of
indexorptrmust be defined. (default:None)dim_size (int, optional) – The size of the output tensor at dimension
dimafter aggregation. (default:None)dim (int, optional) – The dimension in which to aggregate. (default:
-2)max_num_elements – (int, optional): The maximum number of elements within a single aggregation group. (default:
None)
- Return type: