torch_geometric.nn.aggr.SetTransformerAggregation
- class SetTransformerAggregation(channels: int, num_seed_points: int = 1, num_encoder_blocks: int = 1, num_decoder_blocks: int = 1, heads: int = 1, concat: bool = True, layer_norm: bool = False, dropout: float = 0.0)[source]
Bases:
Aggregation执行“Set Transformer”聚合,其中要聚合的元素通过多头注意力块进行处理,如“具有自适应读数的图神经网络”论文中所述。
注意
SetTransformerAggregation需要排序的索引index作为输入。具体来说,如果你将此聚合作为MessagePassing的一部分使用,请确保edge_index按目标节点排序,可以通过手动排序边索引使用sort_edge_index()或调用torch_geometric.data.Data.sort()来实现。- Parameters:
channels (int) – Size of each input sample.
num_seed_points (int, optional) – 种子点的数量。 (默认:
1)num_encoder_blocks (int, optional) – 编码器中Set Attention Blocks (SABs)的数量。(默认:
1).num_decoder_blocks (int, optional) – 解码器中Set Attention Blocks (SABs)的数量。(默认:
1).heads (int, optional) – Number of multi-head-attentions. (default:
1)dropout (float, optional) – Dropout probability of attention weights. (default:
0)
- forward(x: Tensor, index: Optional[Tensor] = None, ptr: Optional[Tensor] = None, dim_size: Optional[int] = None, dim: int = -2, max_num_elements: Optional[int] = None) Tensor[source]
前向传播。
- Parameters:
x (torch.Tensor) – The source tensor.
index (torch.Tensor, optional) – The indices of elements for applying the aggregation. One of
indexorptrmust be defined. (default:None)ptr (torch.Tensor, optional) – If given, computes the aggregation based on sorted inputs in CSR representation. One of
indexorptrmust be defined. (default:None)dim_size (int, optional) – The size of the output tensor at dimension
dimafter aggregation. (default:None)dim (int, optional) – The dimension in which to aggregate. (default:
-2)max_num_elements (
Optional[int], default:None) – (int, optional): The maximum number of elements within a single aggregation group. (default:None)
- Return type: