torch_geometric.nn.models.JumpingKnowledge
- class JumpingKnowledge(mode: str, channels: Optional[int] = None, num_layers: Optional[int] = None)[source]
Bases:
Module跳跃知识层聚合模块来自 “Representation Learning on Graphs with Jumping Knowledge Networks” 论文。
跳跃知识是基于连接 (
"cat")执行的\[\mathbf{x}_v^{(1)} \, \Vert \, \ldots \, \Vert \, \mathbf{x}_v^{(T)},\]最大池化 (
"max")\[\max \left( \mathbf{x}_v^{(1)}, \ldots, \mathbf{x}_v^{(T)} \right),\]或 加权求和
\[\sum_{t=1}^T \alpha_v^{(t)} \mathbf{x}_v^{(t)}\]使用从双向LSTM(
"lstm")获得的注意力分数\(\alpha_v^{(t)}\)。- Parameters: