torch_geometric.nn.models.PMLP

class PMLP(in_channels: int, hidden_channels: int, out_channels: int, num_layers: int, dropout: float = 0.0, norm: bool = True, bias: bool = True)[source]

Bases: Module

来自“图神经网络本质上是良好的泛化者:通过桥接GNN和MLP的见解”论文的P(ropagational)MLP模型。PMLP在训练期间与标准MLP相同,但在测试期间采用GNN架构。

Parameters:
  • in_channels (int) – Size of each input sample.

  • hidden_channels (int) – Size of each hidden sample.

  • out_channels (int) – Size of each output sample.

  • num_layers (int) – 层数。

  • dropout (float, optional) – 每个隐藏嵌入的丢弃概率。(默认: 0.)

  • norm (bool, 可选) – 如果设置为 False,将不会应用批量归一化。(默认值:True

  • bias (bool, 可选) – 如果设置为 False,该模块将不会学习加性偏差。(默认值:True

forward(x: Tensor, edge_index: Optional[Tensor] = None) Tensor[source]
Return type:

Tensor

reset_parameters()[source]

重置模块的所有可学习参数。