torch_geometric.nn.norm.PairNorm
- class PairNorm(scale: float = 1.0, scale_individually: bool = False, eps: float = 1e-05)[source]
Bases:
Module应用节点特征上的对归一化,如“PairNorm: Tackling Oversmoothing in GNNs”论文中所述。
\[ \begin{align}\begin{aligned}\begin{split}\mathbf{x}_i^c &= \mathbf{x}_i - \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \\\end{split}\\\mathbf{x}_i^{\prime} &= s \cdot \frac{\mathbf{x}_i^c}{\sqrt{\frac{1}{n} \sum_{i=1}^n {\| \mathbf{x}_i^c \|}^2_2}}\end{aligned}\end{align} \]- Parameters:
- forward(x: Tensor, batch: Optional[Tensor] = None, batch_size: Optional[int] = None) Tensor[source]
前向传播。
- Parameters:
x (torch.Tensor) – The source tensor.
batch (torch.Tensor, optional) – The batch vector \(\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N\), which assigns each element to a specific example. (default:
None)batch_size (int, optional) – The number of examples \(B\). Automatically calculated if not given. (default:
None)
- Return type: