注意
转到末尾 以下载完整的示例代码
Paddle 后端示例:匹配同构图
这个例子是对pygmtools的介绍,展示了如何匹配同构图。
同构图指的是结构相同但节点对应关系未知的图。
# Author: Runzhong Wang <runzhong.wang@sjtu.edu.cn>
# Qi Liu <purewhite@sjtu.edu.cn>
#
# License: Mulan PSL v2 License
import paddle # paddle backend
import pygmtools as pygm
import matplotlib.pyplot as plt # for plotting
from matplotlib.patches import ConnectionPatch # for plotting matching result
import networkx as nx # for plotting graphs
import warnings
warnings.filterwarnings("ignore")
pygm.set_backend('paddle') # set default backend for pygmtools
paddle.device.set_device('cpu')
_ = paddle.seed(1) # fix random seed
生成两个同构图
num_nodes = 10
X_gt = paddle.zeros((num_nodes, num_nodes))
X_gt[paddle.arange(0, num_nodes, dtype=paddle.int64), paddle.randperm(num_nodes)] = 1
A1 = paddle.rand((num_nodes, num_nodes))
A1 = (A1 + A1.t() > 1.) / 2 * (A1 + A1.t())
A1[paddle.arange(A1.shape[0]), paddle.arange(A1.shape[1])] = 0 # paddle.diagonal(A1)[:] = 0
A2 = paddle.mm(paddle.mm(X_gt.t(), A1), X_gt)
n1 = paddle.to_tensor([num_nodes])
n2 = paddle.to_tensor([num_nodes])
可视化图表
plt.figure(figsize=(8, 4))
G1 = nx.from_numpy_array(A1.numpy())
G2 = nx.from_numpy_array(A2.numpy())
pos1 = nx.spring_layout(G1)
pos2 = nx.spring_layout(G2)
plt.subplot(1, 2, 1)
plt.title('Graph 1')
nx.draw_networkx(G1, pos=pos1)
plt.subplot(1, 2, 2)
plt.title('Graph 2')
nx.draw_networkx(G2, pos=pos2)

这两个图看起来不同,因为它们没有对齐。然后我们通过图匹配来对齐这两个图。
构建亲和矩阵
为了通过图匹配来匹配同构图,我们遵循二次分配问题(QAP)的公式:
\[\begin{split}&\max_{\mathbf{X}} \ \texttt{vec}(\mathbf{X})^\top \mathbf{K} \texttt{vec}(\mathbf{X})\\
s.t. \quad &\mathbf{X} \in \{0, 1\}^{n_1\times n_2}, \ \mathbf{X}\mathbf{1} = \mathbf{1}, \ \mathbf{X}^\top\mathbf{1} \leq \mathbf{1}\end{split}\]
其中第一步是构建亲和矩阵(\(\mathbf{K}\))
conn1, edge1 = pygm.utils.dense_to_sparse(A1)
conn2, edge2 = pygm.utils.dense_to_sparse(A2)
import functools
gaussian_aff = functools.partial(pygm.utils.gaussian_aff_fn, sigma=.1) # set affinity function
K = pygm.utils.build_aff_mat(None, edge1, conn1, None, edge2, conn2, n1, None, n2, None, edge_aff_fn=gaussian_aff)
亲和矩阵的可视化。对于具有\(N\)个节点的图匹配问题,亲和矩阵有\(N^2\times N^2\)个元素,因为每个图中有\(N^2\)条边。
注意
亲和矩阵的对角线元素为空,因为在这个示例中没有节点特征。
plt.figure(figsize=(4, 4))
plt.title(f'Affinity Matrix (size: {K.shape[0]}$\\times${K.shape[1]})')
plt.imshow(K.numpy(), cmap='Blues')

<matplotlib.image.AxesImage object at 0x7feb92da5180>
使用RRWM求解器解决图匹配问题
请参阅rrwm()以获取API参考。
X = pygm.rrwm(K, n1, n2)
RRWM 的输出是一个软匹配矩阵。可视化:
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.title('RRWM Soft Matching Matrix')
plt.imshow(X.numpy(), cmap='Blues')
plt.subplot(1, 2, 2)
plt.title('Ground Truth Matching Matrix')
plt.imshow(X_gt.numpy(), cmap='Blues')

<matplotlib.image.AxesImage object at 0x7feb9296e230>
获取离散匹配矩阵
然后采用匈牙利算法来达到一个离散的匹配矩阵
X = pygm.hungarian(X)
离散匹配矩阵的可视化:
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.title(f'RRWM Matching Matrix (acc={((X * X_gt).sum()/ X_gt.sum()).item():.2f})')
plt.imshow(X.numpy(), cmap='Blues')
plt.subplot(1, 2, 2)
plt.title('Ground Truth Matching Matrix')
plt.imshow(X_gt.numpy(), cmap='Blues')

<matplotlib.image.AxesImage object at 0x7feb9296fd90>
对齐原始图形
绘制匹配(绿色线条表示正确匹配,红色线条表示错误匹配):
plt.figure(figsize=(8, 4))
ax1 = plt.subplot(1, 2, 1)
plt.title('Graph 1')
nx.draw_networkx(G1, pos=pos1)
ax2 = plt.subplot(1, 2, 2)
plt.title('Graph 2')
nx.draw_networkx(G2, pos=pos2)
for i in range(num_nodes):
j = paddle.argmax(X[i]).item()
con = ConnectionPatch(xyA=pos1[i], xyB=pos2[j], coordsA="data", coordsB="data",
axesA=ax1, axesB=ax2, color="green" if X_gt[i, j] else "red")
plt.gca().add_artist(con)

对齐节点:
align_A2 = paddle.mm(paddle.mm(X, A2), X.t())
plt.figure(figsize=(8, 4))
ax1 = plt.subplot(1, 2, 1)
plt.title('Graph 1')
nx.draw_networkx(G1, pos=pos1)
ax2 = plt.subplot(1, 2, 2)
plt.title('Aligned Graph 2')
align_pos2 = {}
for i in range(num_nodes):
j = paddle.argmax(X[i]).item()
align_pos2[j] = pos1[i]
con = ConnectionPatch(xyA=pos1[i], xyB=align_pos2[j], coordsA="data", coordsB="data",
axesA=ax1, axesB=ax2, color="green" if X_gt[i, j] else "red")
plt.gca().add_artist(con)
nx.draw_networkx(G2, pos=align_pos2)

其他求解器也可用
经典IPFP求解器
请参阅ipfp()以获取API参考。
X = pygm.ipfp(K, n1, n2)
IPFP匹配结果的可视化:
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.title(f'IPFP Matching Matrix (acc={((X * X_gt).sum()/ X_gt.sum()).item():.2f})')
plt.imshow(X.numpy(), cmap='Blues')
plt.subplot(1, 2, 2)
plt.title('Ground Truth Matching Matrix')
plt.imshow(X_gt.numpy(), cmap='Blues')

<matplotlib.image.AxesImage object at 0x7feb927e6890>
经典SM求解器
请参阅sm()以获取API参考。
X = pygm.sm(K, n1, n2)
X = pygm.hungarian(X)
SM匹配结果的可视化:
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.title(f'SM Matching Matrix (acc={((X * X_gt).sum()/ X_gt.sum()).item():.2f})')
plt.imshow(X.numpy(), cmap='Blues')
plt.subplot(1, 2, 2)
plt.title('Ground Truth Matching Matrix')
plt.imshow(X_gt.numpy(), cmap='Blues')

<matplotlib.image.AxesImage object at 0x7feb926af8e0>
NGM神经网络求解器
请参阅ngm()的API参考。
with paddle.set_grad_enabled(False):
X = pygm.ngm(K, n1, n2, pretrain='voc')
X = pygm.hungarian(X)
NGM匹配结果的可视化:
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.title(f'NGM Matching Matrix (acc={((X * X_gt).sum()/ X_gt.sum()).item():.2f})')
plt.imshow(X.numpy(), cmap='Blues')
plt.subplot(1, 2, 2)
plt.title('Ground Truth Matching Matrix')
plt.imshow(X_gt.numpy(), cmap='Blues')

<matplotlib.image.AxesImage object at 0x7feb9259aa10>
脚本总运行时间: (0 分钟 1.179 秒)