Numpy 后端示例:通过 QAP 求解器匹配图像关键点

此示例展示了如何使用pygmtools提供的图匹配求解器来匹配图像关键点。 这些求解器遵循二次分配问题的公式,通常可以即插即用。 匹配后的图像可以进一步处理以用于其他下游任务。

# Author: Runzhong Wang <runzhong.wang@sjtu.edu.cn>
#         Wenzheng Pan <pwz1121@sjtu.edu.cn>
#
# License: Mulan PSL v2 License

注意

以下求解器支持QAP公式,并包含在此示例中:

import numpy as np # numpy backend
import cv2 as cv
import pygmtools as pygm
import matplotlib.pyplot as plt # for plotting
from matplotlib.patches import ConnectionPatch # for plotting matching result
import scipy.io as sio # for loading .mat file
import scipy.spatial as spa # for Delaunay triangulation
from sklearn.decomposition import PCA as PCAdimReduc
import itertools
from PIL import Image
pygm.set_backend('numpy') # set numpy as backend for pygmtools

加载图片

图像来自Willow对象类数据集(该数据集也可在pygmtools的基准测试中使用,参见WillowObject)。

图像被调整为256x256。

obj_resize = (256, 256)
img1 = Image.open('../data/willow_duck_0001.png')
img2 = Image.open('../data/willow_duck_0002.png')
kpts1 = np.array(sio.loadmat('../data/willow_duck_0001.mat')['pts_coord'])
kpts2 = np.array(sio.loadmat('../data/willow_duck_0002.mat')['pts_coord'])
kpts1[0] = kpts1[0] * obj_resize[0] / img1.size[0]
kpts1[1] = kpts1[1] * obj_resize[1] / img1.size[1]
kpts2[0] = kpts2[0] * obj_resize[0] / img2.size[0]
kpts2[1] = kpts2[1] * obj_resize[1] / img2.size[1]
img1 = img1.resize(obj_resize, resample=Image.BILINEAR)
img2 = img2.resize(obj_resize, resample=Image.BILINEAR)

可视化图像和关键点

def plot_image_with_graph(img, kpt, A=None):
    plt.imshow(img)
    plt.scatter(kpt[0], kpt[1], c='w', edgecolors='k')
    if A is not None:
        for x, y in zip(np.nonzero(A)[0], np.nonzero(A)[1]):
            plt.plot((kpt[0, x], kpt[0, y]), (kpt[1, x], kpt[1, y]), 'k-')

plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.title('Image 1')
plot_image_with_graph(img1, kpts1)
plt.subplot(1, 2, 2)
plt.title('Image 2')
plot_image_with_graph(img2, kpts2)
Image 1, Image 2

构建图表

图结构是基于关键点集的几何结构构建的。在这个例子中,我们参考了Delaunay三角剖分

def delaunay_triangulation(kpt):
    d = spa.Delaunay(kpt.T)
    A = np.zeros((len(kpt[0]), len(kpt[0])))
    for simplex in d.simplices:
        for pair in itertools.permutations(simplex, 2):
            A[pair] = 1
    return A

A1 = delaunay_triangulation(kpts1)
A2 = delaunay_triangulation(kpts2)

我们将边的长度编码为边特征

A1 = ((np.expand_dims(kpts1, 1) - np.expand_dims(kpts1, 2)) ** 2).sum(axis=0) * A1
A1 = (A1 / A1.max()).astype(np.float32)
A2 = ((np.expand_dims(kpts2, 1) - np.expand_dims(kpts2, 2)) ** 2).sum(axis=0) * A2
A2 = (A2 / A2.max()).astype(np.float32)

可视化图表

plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.title('Image 1 with Graphs')
plot_image_with_graph(img1, kpts1, A1)
plt.subplot(1, 2, 2)
plt.title('Image 2 with Graphs')
plot_image_with_graph(img2, kpts2, A2)
Image 1 with Graphs, Image 2 with Graphs

提取节点特征

让我们采用SIFT方法来提取节点特征。

np_img1 = np.array(img1, dtype=np.float32)
np_img2 = np.array(img2, dtype=np.float32)

def detect_sift(img):
    sift = cv.SIFT_create()
    gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
    img8bit = cv.normalize(gray, None, 0, 255, cv.NORM_MINMAX).astype('uint8')
    kpt = sift.detect(img8bit, None)
    kpt, feat = sift.compute(img8bit, kpt)
    return kpt, feat

sift_kpts1, feat1 = detect_sift(np_img1)
sift_kpts2, feat2 = detect_sift(np_img2)
sift_kpts1 = np.round(cv.KeyPoint_convert(sift_kpts1).T).astype(int)
sift_kpts2 = np.round(cv.KeyPoint_convert(sift_kpts2).T).astype(int)

标准化特征

num_features = feat1.shape[1]
feat1 = feat1 / np.expand_dims(np.linalg.norm(feat1, axis=1), 1).repeat(128, axis=1)
feat2 = feat2 / np.expand_dims(np.linalg.norm(feat2, axis=1), 1).repeat(128, axis=1)

通过最近邻插值提取节点特征

rounded_kpts1 = np.round(kpts1).astype(int)
rounded_kpts2 = np.round(kpts2).astype(int)

idx_1, idx_2 = [], []
for i in range(rounded_kpts1.shape[1]):
    y1 = np.where(sift_kpts1[1] == sift_kpts1[1][np.abs(sift_kpts1[1] - rounded_kpts1[1][i]).argmin()])
    y2 = np.where(sift_kpts2[1] == sift_kpts2[1][np.abs(sift_kpts2[1] - rounded_kpts2[1][i]).argmin()])
    t1 = sift_kpts1[0][y1]
    t2 = sift_kpts2[0][y2]
    x1 = np.where(sift_kpts1[0] == t1[np.abs(t1 - rounded_kpts1[0][i]).argmin()])
    x2 = np.where(sift_kpts2[0] == t2[np.abs(t2 - rounded_kpts2[0][i]).argmin()])
    idx_1.append(np.intersect1d(x1, y1)[0])
    idx_2.append(np.intersect1d(x2, y2)[0])

node1 = feat1[idx_1, :] # shape: NxC
node2 = feat2[idx_2, :] # shape: NxC

构建亲和矩阵

我们遵循二次分配问题(QAP)的公式:

\[\begin{split}&\max_{\mathbf{X}} \ \texttt{vec}(\mathbf{X})^\top \mathbf{K} \texttt{vec}(\mathbf{X})\\ s.t. \quad &\mathbf{X} \in \{0, 1\}^{n_1\times n_2}, \ \mathbf{X}\mathbf{1} = \mathbf{1}, \ \mathbf{X}^\top\mathbf{1} \leq \mathbf{1}\end{split}\]

其中第一步是构建亲和矩阵(\(\mathbf{K}\)

conn1, edge1 = pygm.utils.dense_to_sparse(A1)
conn2, edge2 = pygm.utils.dense_to_sparse(A2)
import functools
gaussian_aff = functools.partial(pygm.utils.gaussian_aff_fn, sigma=1) # set affinity function
K = pygm.utils.build_aff_mat(node1, edge1, conn1, node2, edge2, conn2, edge_aff_fn=gaussian_aff)

亲和矩阵的可视化。对于具有\(N\)个节点的图匹配问题,亲和矩阵有\(N^2\times N^2\)个元素,因为每个图中有\(N^2\)条边。

注意

对角线元素是节点亲和力,非对角线元素是边缘特征。

plt.figure(figsize=(4, 4))
plt.title(f'Affinity Matrix (size: {K.shape[0]}$\\times${K.shape[1]})')
plt.imshow(K, cmap='Blues')
Affinity Matrix (size: 100$\times$100)
<matplotlib.image.AxesImage object at 0x7fd8784e31c0>

使用RRWM求解器解决图匹配问题

请参阅rrwm()以获取API参考。

X = pygm.rrwm(K, kpts1.shape[1], kpts2.shape[1])

RRWM的输出是一个软匹配矩阵。然后采用匈牙利算法来达到一个离散的匹配矩阵。

X = pygm.hungarian(X)

绘制匹配

正确的匹配用绿色标记,错误的匹配用红色标记。在这个例子中,节点按照它们的真实类别排序(即真实匹配矩阵是一个对角矩阵)。

plt.figure(figsize=(8, 4))
plt.suptitle('Image Matching Result by RRWM')
ax1 = plt.subplot(1, 2, 1)
plot_image_with_graph(img1, kpts1, A1)
ax2 = plt.subplot(1, 2, 2)
plot_image_with_graph(img2, kpts2, A2)
for i in range(X.shape[0]):
    j = np.argmax(X[i]).item()
    con = ConnectionPatch(xyA=kpts1[:, i], xyB=kpts2[:, j], coordsA="data", coordsB="data",
                          axesA=ax1, axesB=ax2, color="red" if i != j else "green")
    plt.gca().add_artist(con)
Image Matching Result by RRWM

通过其他求解器解决

我们也可以在这个特定问题上对其他求解器进行快速基准测试。

IPFP求解器

请参阅ipfp()以获取API参考。

X = pygm.ipfp(K, kpts1.shape[1], kpts2.shape[1])

plt.figure(figsize=(8, 4))
plt.suptitle('Image Matching Result by IPFP')
ax1 = plt.subplot(1, 2, 1)
plot_image_with_graph(img1, kpts1, A1)
ax2 = plt.subplot(1, 2, 2)
plot_image_with_graph(img2, kpts2, A2)
for i in range(X.shape[0]):
    j = np.argmax(X[i]).item()
    con = ConnectionPatch(xyA=kpts1[:, i], xyB=kpts2[:, j], coordsA="data", coordsB="data",
                          axesA=ax1, axesB=ax2, color="red" if i != j else "green")
    plt.gca().add_artist(con)
Image Matching Result by IPFP
/home/wzever/pygmtools/pygmtools/numpy_backend.py:304: RuntimeWarning: invalid value encountered in divide
  t0 = alpha / beta

SM求解器

请参阅sm()以获取API参考。

X = pygm.sm(K, kpts1.shape[1], kpts2.shape[1])
X = pygm.hungarian(X)

plt.figure(figsize=(8, 4))
plt.suptitle('Image Matching Result by SM')
ax1 = plt.subplot(1, 2, 1)
plot_image_with_graph(img1, kpts1, A1)
ax2 = plt.subplot(1, 2, 2)
plot_image_with_graph(img2, kpts2, A2)
for i in range(X.shape[0]):
    j = np.argmax(X[i]).item()
    con = ConnectionPatch(xyA=kpts1[:, i], xyB=kpts2[:, j], coordsA="data", coordsB="data",
                          axesA=ax1, axesB=ax2, color="red" if i != j else "green")
    plt.gca().add_artist(con)
Image Matching Result by SM

NGM 求解器

请参阅ngm()的API参考。

注意

NGM求解器是在不同的问题设置上预训练的,因此它们的性能可能看起来较差。 为了提高它们的性能,您可以改变构建亲和矩阵的方式,或者尝试在新的问题上微调NGM。

NGM求解器在Willow数据集上预训练:

X = pygm.ngm(K, kpts1.shape[1], kpts2.shape[1], pretrain='willow')
X = pygm.hungarian(X)

plt.figure(figsize=(8, 4))
plt.suptitle('Image Matching Result by NGM (willow pretrain)')
ax1 = plt.subplot(1, 2, 1)
plot_image_with_graph(img1, kpts1, A1)
ax2 = plt.subplot(1, 2, 2)
plot_image_with_graph(img2, kpts2, A2)
for i in range(X.shape[0]):
    j = np.argmax(X[i]).item()
    con = ConnectionPatch(xyA=kpts1[:, i], xyB=kpts2[:, j], coordsA="data", coordsB="data",
                          axesA=ax1, axesB=ax2, color="red" if i != j else "green")
    plt.gca().add_artist(con)
Image Matching Result by NGM (willow pretrain)

NGM 求解器在 VOC 数据集上预训练:

X = pygm.ngm(K, kpts1.shape[1], kpts2.shape[1], pretrain='voc')
X = pygm.hungarian(X)

plt.figure(figsize=(8, 4))
plt.suptitle('Image Matching Result by NGM (voc pretrain)')
ax1 = plt.subplot(1, 2, 1)
plot_image_with_graph(img1, kpts1, A1)
ax2 = plt.subplot(1, 2, 2)
plot_image_with_graph(img2, kpts2, A2)
for i in range(X.shape[0]):
    j = np.argmax(X[i]).item()
    con = ConnectionPatch(xyA=kpts1[:, i], xyB=kpts2[:, j], coordsA="data", coordsB="data",
                          axesA=ax1, axesB=ax2, color="red" if i != j else "green")
    plt.gca().add_artist(con)
Image Matching Result by NGM (voc pretrain)

脚本总运行时间: (0 分钟 2.166 秒)

Gallery generated by Sphinx-Gallery