TransH

class TransH(*, embedding_dim: int = 50, scoring_fct_norm: int = 2, power_norm: bool = False, entity_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function xavier_normal_>, regularizer: str | ~pykeen.regularizers.Regularizer | type[~pykeen.regularizers.Regularizer] | None = None, regularizer_kwargs: ~collections.abc.Mapping[str, ~typing.Any] | None = None, relation_initializer: str | ~typing.Callable[[~torch.Tensor], ~torch.Tensor] | None = <function xavier_normal_>, relation_regularizer: str | ~pykeen.regularizers.Regularizer | type[~pykeen.regularizers.Regularizer] | None = None, relation_regularizer_kwargs: ~collections.abc.Mapping[str, ~typing.Any] | None = None, **kwargs)[来源]

基础类:ERModel[Tensor, tuple[Tensor, Tensor], Tensor]

TransH 的一个实现 [wang2014]

该模型将实体表示为\(d\)维向量,将关系表示为超平面内的法向量和平移对的组合。它们存储在Embedding中。然后,这些表示被传递给TransHInteraction函数以获得分数。

另请参阅

初始化TransH。

Parameters:

属性摘要

hpo_default

优化模型超参数的默认策略

regularizer_default_kwargs

默认正则化类的默认参数

relation_regularizer_default_kwargs

[wang2014] 用于 TransH 的设置

属性文档

hpo_default: ClassVar[Mapping[str, Any]] = {'embedding_dim': {'high': 256, 'low': 16, 'q': 16, 'type': <class 'int'>}, 'scoring_fct_norm': {'high': 2, 'low': 1, 'type': <class 'int'>}}

优化模型超参数的默认策略

regularizer_default_kwargs: ClassVar[Mapping[str, Any]] = {'apply_only_once': True, 'dim': -1, 'max_norm': 1.0, 'p': 2, 'power_norm': True, 'weight': 0.05}

默认正则化类的默认参数

relation_regularizer_default_kwargs: ClassVar[Mapping[str, Any]] = {'apply_only_once': True, 'epsilon': 1e-05, 'weight': 0.05}

[wang2014] 用于 TransH 的设置