注意
跳转到末尾 以下载完整示例代码。
具有分解耦合的最优传输
二维经验分布之间因子耦合OT的示例
# Author: Remi Flamary <remi.flamary@polytechnique.edu>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 2
import numpy as np
import matplotlib.pylab as pl
import ot
import ot.plot
生成数据并绘制图形

Text(0.5, 1.0, 'Source and target distributions')
计算分解的 OT 和精确的 OT 解
绘制因素化最优传输和精确最优传输解决方案
pl.figure(2, (14, 4))
pl.subplot(1, 3, 1)
ot.plot.plot2D_samples_mat(xs, xt, G0, c=[0.2, 0.2, 0.2], alpha=0.1)
pl.plot(xs[:, 0], xs[:, 1], "+b", label="Source samples")
pl.plot(xt[:, 0], xt[:, 1], "xr", label="Target samples")
pl.title("Exact OT with samples")
pl.subplot(1, 3, 2)
ot.plot.plot2D_samples_mat(xs, xb, Ga, c=[0.6, 0.6, 0.9], alpha=0.5)
ot.plot.plot2D_samples_mat(xb, xt, Gb, c=[0.9, 0.6, 0.6], alpha=0.5)
pl.plot(xs[:, 0], xs[:, 1], "+b", label="Source samples")
pl.plot(xt[:, 0], xt[:, 1], "xr", label="Target samples")
pl.plot(xb[:, 0], xb[:, 1], "og", label="Template samples")
pl.title("Factored OT with template samples")
pl.subplot(1, 3, 3)
ot.plot.plot2D_samples_mat(xs, xt, Ga.dot(Gb), c=[0.2, 0.2, 0.2], alpha=0.1)
pl.plot(xs[:, 0], xs[:, 1], "+b", label="Source samples")
pl.plot(xt[:, 0], xt[:, 1], "xr", label="Target samples")
pl.title("Factored OT low rank OT plan")

Text(0.5, 1.0, 'Factored OT low rank OT plan')
脚本的总运行时间: (0分钟2.367秒)