Shortcuts

torch.distributions.normal 的源代码

import math
from numbers import Number, Real

import torch
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import _standard_normal, broadcast_all

__all__ = ["Normal"]


[docs]class Normal(ExponentialFamily): r""" 创建一个正态(也称为高斯)分布,由 :attr:`loc` 和 :attr:`scale` 参数化。 示例:: >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> m = Normal(torch.tensor([0.0]), torch.tensor([1.0])) >>> m.sample() # 正态分布,loc=0,scale=1 tensor([ 0.1046]) 参数: loc (float 或 Tensor): 分布的均值(通常称为 mu) scale (float 或 Tensor): 分布的标准差 (通常称为 sigma) """ arg_constraints = {"loc": constraints.real, "scale": constraints.positive} support = constraints.real has_rsample = True _mean_carrier_measure = 0 @property def mean(self): return self.loc @property def mode(self): return self.loc @property def stddev(self): return self.scale @property def variance(self): return self.stddev.pow(2) def __init__(self, loc, scale, validate_args=None): self.loc, self.scale = broadcast_all(loc, scale) if isinstance(loc, Number) and isinstance(scale, Number): batch_shape = torch.Size() else: batch_shape = self.loc.size() super().__init__(batch_shape, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Normal, _instance) batch_shape = torch.Size(batch_shape) new.loc = self.loc.expand(batch_shape) new.scale = self.scale.expand(batch_shape) super(Normal, new).__init__(batch_shape, validate_args=False) new._validate_args = self._validate_args return new
[docs] def sample(self, sample_shape=torch.Size()): shape = self._extended_shape(sample_shape) with torch.no_grad(): return torch.normal(self.loc.expand(shape), self.scale.expand(shape))
[docs] def rsample(self, sample_shape=torch.Size()): shape = self._extended_shape(sample_shape) eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device) return self.loc + eps * self.scale
[docs] def log_prob(self, value): if self._validate_args: self._validate_sample(value) # 计算方差 var = self.scale**2 log_scale = ( math.log(self.scale) if</
优云智算