Shortcuts

torch.signal.windows.nuttall

torch.signal.windows.nuttall(M, *, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False)[源代码]

根据Nuttall计算最小4项Blackman-Harris窗口。

wn=10.36358cos(zn)+0.48917cos(2zn)0.13659cos(3zn)+0.01064cos(4zn)w_n = 1 - 0.36358 \cos{(z_n)} + 0.48917 \cos{(2z_n)} - 0.13659 \cos{(3z_n)} + 0.01064 \cos{(4z_n)}

其中 z_n = 2 π n/ M

窗口被归一化为1(最大值为1)。然而,如果M是偶数且symTrue,则1不会出现。

Parameters

M (int) – 窗口的长度。 换句话说,返回窗口的点的数量。

Keyword Arguments
  • sym (bool, 可选) – 如果为False,返回一个适合用于光谱分析的周期性窗口。如果为True,返回一个适合用于滤波器设计的对称窗口。默认值:True

  • dtype (torch.dtype, 可选) – 返回张量的所需数据类型。 默认值:如果 None,则使用全局默认值(参见 torch.set_default_dtype())。

  • 布局 (torch.layout, 可选) – 返回张量的所需布局。 默认值: torch.strided

  • 设备 (torch.device, 可选) – 返回张量所需的设备。 默认值:如果 None,则使用默认张量类型的当前设备 (参见 torch.set_default_device())。device 将是 CPU 用于 CPU 张量类型,以及当前 CUDA 设备用于 CUDA 张量类型。

  • requires_grad (布尔值, 可选) – 如果 autograd 应该记录对返回张量的操作。默认值:False

Return type

张量

参考文献:

- A. Nuttall, “一些具有非常好旁瓣行为的窗口,”
  IEEE 声学、语音和信号处理汇刊, 第29卷, 第1期, 第84-91页,
  1981年2月. https://doi.org/10.1109/TASSP.1981.1163506

- Heinzel G. 等人, “通过离散傅里叶变换(DFT)进行频谱和频谱密度估计,
  包括窗口函数的综合列表和一些新的平顶窗口”,
  2002年2月15日 https://holometer.fnal.gov/GH_FFT.pdf

示例:

>>> # 生成一个对称的Nutall窗口。
>>> torch.signal.windows.general_hamming(5, sym=True)
tensor([3.6280e-04, 2.2698e-01, 1.0000e+00, 2.2698e-01, 3.6280e-04])

>>> # 生成一个周期性的Nutall窗口。
>>> torch.signal.windows.general_hamming(5, sym=False)
tensor([3.6280e-04, 1.1052e-01, 7.9826e-01, 7.9826e-01, 1.1052e-01])
优云智算