句子识别器
一个可训练的句子分割流水线组件。如需更简单的基于规则的策略,请参阅Sentencizer。
Assigned Attributes
预测值将被赋值给Token.is_sent_start。生成的句子可以通过Doc.sents访问。
| 位置 | 值 |
|---|---|
Token.is_sent_start | A boolean value indicating whether the token starts a sentence. This will be either True or False for all tokens. bool |
Doc.sents | An iterator over sentences in the Doc, determined by Token.is_sent_start values. Iterator[Span] |
配置与实现
默认配置由管道组件工厂定义,描述了组件应如何配置。您可以通过nlp.add_pipe中的config参数或在训练用的config.cfg中覆盖其设置。有关架构及其参数和超参数的详细信息,请参阅模型架构文档。
| 设置 | 描述 |
|---|---|
model | The Model powering the pipeline component. Defaults to Tagger. Model[List[Doc], List[Floats2d]] |
overwrite v3.2 | Whether existing annotation is overwritten. Defaults to False. bool |
scorer v3.2 | The scoring method. Defaults to Scorer.score_spans for the attribute "sents". Optional[Callable] |
explosion/spaCy/master/spacy/pipeline/senter.pyx
SentenceRecognizer.__init__ 方法
初始化句子识别器。
创建一个新的管道实例。在您的应用程序中,通常会使用快捷方式,通过其字符串名称并使用nlp.add_pipe来实例化该组件。
| 名称 | 描述 |
|---|---|
vocab | The shared vocabulary. Vocab |
model | The Model powering the pipeline component. Model[List[Doc], List[Floats2d]] |
name | String name of the component instance. Used to add entries to the losses during training. str |
| 仅关键字 | |
overwrite v3.2 | Whether existing annotation is overwritten. Defaults to False. bool |
scorer v3.2 | The scoring method. Defaults to Scorer.score_spans for the attribute "sents". Optional[Callable] |
SentenceRecognizer.__call__ 方法
将管道应用于单个文档。文档会被原地修改并返回。
这通常在调用nlp对象处理文本时自动完成,
所有管道组件会按顺序应用于Doc对象。
__call__和
pipe方法都会委托给
predict和
set_annotations方法。
| 名称 | 描述 |
|---|---|
doc | The document to process. Doc |
| 返回值 | 处理后的文档。Doc |
SentenceRecognizer.pipe 方法
将管道应用于文档流。这通常在调用nlp对象处理文本时自动完成,所有流水线组件会按顺序应用于Doc对象。__call__和pipe方法都会委托给predict和set_annotations方法执行。
| 名称 | 描述 |
|---|---|
stream | A stream of documents. Iterable[Doc] |
| 仅关键字 | |
batch_size | The number of documents to buffer. Defaults to 128. int |
| YIELDS | 按顺序处理后的文档。Doc |
SentenceRecognizer.initialize 方法
初始化组件以进行训练。get_examples应是一个返回可迭代Example对象的函数。至少需要提供一个示例。这些数据示例用于初始化组件模型,可以是完整的训练数据或代表性样本。初始化过程包括验证网络、推断缺失形状以及根据数据设置标签方案。该方法通常由Language.initialize调用。
| 名称 | 描述 |
|---|---|
get_examples | Function that returns gold-standard annotations in the form of Example objects. Must contain at least one Example. Callable[[], Iterable[Example]] |
| 仅关键字 | |
nlp | The current nlp object. Defaults to None. Optional[Language] |
SentenceRecognizer.predict 方法
将组件的模型应用于一批Doc对象,而不修改它们。
| 名称 | 描述 |
|---|---|
docs | The documents to predict. Iterable[Doc] |
| 返回值 | 模型对每个文档的预测结果。 |
SentenceRecognizer.set_annotations 方法
使用预先计算的分数修改一批Doc对象。
| 名称 | 描述 |
|---|---|
docs | The documents to modify. Iterable[Doc] |
scores | The scores to set, produced by SentenceRecognizer.predict. |
SentenceRecognizer.update 方法
从一批包含预测和黄金标准注释的Example对象中学习,并更新组件的模型。委托给predict和get_loss。
| 名称 | 描述 |
|---|---|
examples | A batch of Example objects to learn from. Iterable[Example] |
| 仅关键字 | |
drop | The dropout rate. float |
sgd | An optimizer. Will be created via create_optimizer if not set. Optional[Optimizer] |
losses | Optional record of the loss during training. Updated using the component name as the key. Optional[Dict[str, float]] |
| RETURNS | The updated losses dictionary. Dict[str, float] |
SentenceRecognizer.rehearse 方法实验性v3.0
对一批数据执行“预演”更新。预演更新旨在教导当前模型做出与初始模型相似的预测,以尝试解决“灾难性遗忘”问题。此功能为实验性功能。
| 名称 | 描述 |
|---|---|
examples | A batch of Example objects to learn from. Iterable[Example] |
| 仅关键字 | |
drop | The dropout rate. float |
sgd | An optimizer. Will be created via create_optimizer if not set. Optional[Optimizer] |
losses | Optional record of the loss during training. Updated using the component name as the key. Optional[Dict[str, float]] |
| RETURNS | The updated losses dictionary. Dict[str, float] |
SentenceRecognizer.get_loss 方法
计算这批文档及其预测分数的损失和损失梯度。
| 名称 | 描述 |
|---|---|
examples | The batch of examples. Iterable[Example] |
scores | Scores representing the model’s predictions. |
| RETURNS | The loss and the gradient, i.e. (loss, gradient). Tuple[float, float] |
SentenceRecognizer.create_optimizer 方法
为管道组件创建一个优化器。
| 名称 | 描述 |
|---|---|
| 返回值 | 优化器。Optimizer |
SentenceRecognizer.use_params 方法上下文管理器
修改管道的模型,以使用给定的参数值。在上下文结束时,原始参数将被恢复。
| 名称 | 描述 |
|---|---|
params | The parameter values to use in the model. dict |
SentenceRecognizer.to_disk 方法
将管道序列化到磁盘。
| 名称 | 描述 |
|---|---|
path | A path to a directory, which will be created if it doesn’t exist. Paths may be either strings or Path-like objects. Union[str,Path] |
| 仅关键字 | |
exclude | String names of serialization fields to exclude. Iterable[str] |
SentenceRecognizer.from_disk 方法
从磁盘加载管道。原地修改对象并返回它。
| 名称 | 描述 |
|---|---|
path | A path to a directory. Paths may be either strings or Path-like objects. Union[str,Path] |
| 仅关键字 | |
exclude | String names of serialization fields to exclude. Iterable[str] |
| RETURNS | The modified SentenceRecognizer object. SentenceRecognizer |
SentenceRecognizer.to_bytes 方法
将管道序列化为字节串。
| 名称 | 描述 |
|---|---|
| 仅关键字 | |
exclude | String names of serialization fields to exclude. Iterable[str] |
| RETURNS | The serialized form of the SentenceRecognizer object. bytes |
SentenceRecognizer.from_bytes 方法
从字节串加载管道。原地修改对象并返回它。
| 名称 | 描述 |
|---|---|
bytes_data | The data to load from. bytes |
| 仅关键字 | |
exclude | String names of serialization fields to exclude. Iterable[str] |
| RETURNS | The SentenceRecognizer object. SentenceRecognizer |
序列化字段
在序列化过程中,spaCy会导出多个用于恢复对象不同方面的数据字段。如果需要,您可以通过exclude参数传入字符串名称来将它们排除在序列化之外。
| 名称 | 描述 |
|---|---|
vocab | The shared Vocab. |
cfg | The config file. You usually don’t want to exclude this. |
model | The binary model data. You usually don’t want to exclude this. |