流水线

SpanCategorizer

class,experimentalv3.1
String name:spancatTrainable:
用于标注可能重叠文本跨度的流水线组件

一个span分类器由两部分组成:一个建议函数用于提出可能重叠的候选span,以及一个标注模型用于为每个候选span预测零个或多个标签。

该组件有两种形式:spancatspancat_singlelabel(在spaCy v3.5.1版本中新增)。当需要对文本片段进行多标签分类时,请使用spancatspancat组件采用Logistic层,其中每个类别的输出概率相互独立。然而,如果需要预测一个文本片段最多只有一个真实类别,则使用spancat_singlelabel。它使用Softmax层并将任务视为多分类问题。

预测的文本片段将保存在文档的SpanGroup中,位置为doc.spans[spans_key],其中spans_key是组件配置设置。单个片段分数存储在doc.spans[spans_key].attrs["scores"]中。

Assigned Attributes

预测结果将保存到Doc.spans[spans_key]作为SpanGroup。在SpanGroup中的span分数将被保存在SpanGroup.attrs["scores"]中。

spans_key 默认为 "sc",但可以作为参数传递。spancat 组件将覆盖 spans key doc.spans[spans_key] 下的任何现有 spans。

位置
Doc.spans[spans_key]The annotated spans. SpanGroup
Doc.spans[spans_key].attrs["scores"]The score for each span in the SpanGroup. Floats1d

配置与实现

默认配置由管道组件工厂定义,描述了组件应如何配置。您可以通过nlp.add_pipe中的config参数或在训练用的config.cfg中覆盖其设置。有关架构及其参数和超参数的详细信息,请参阅模型架构文档。

设置描述
suggesterA function that suggests spans. Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to ngram_suggester. Callable[[Iterable[Doc], Optional[Ops]],Ragged]
modelA model instance that is given a a list of documents and (start, end) indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to SpanCategorizer. Model[Tuple[List[Doc],Ragged],Floats2d]
spans_keyKey of the Doc.spans dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to "sc". str
thresholdMinimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Meant to be used in combination with the multi-class spancat component with a Logistic scoring layer. Defaults to 0.5. float
max_positiveMaximum number of labels to consider positive per span. Defaults to None, indicating no limit. Meant to be used together with the spancat component and defaults to 0 with spancat_singlelabel. Optional[int]
scorerThe scoring method. Defaults to Scorer.score_spans for Doc.spans[spans_key] with overlapping spans allowed. Optional[Callable]
add_negative_label v3.5.1Whether to learn to predict a special negative label for each unannotated Span . This should be True when using a Softmax classifier layer and so its True by default for spancat_singlelabel. Spans with negative labels and their scores are not stored as annotations. bool
negative_weight v3.5.1Multiplier for the loss terms. It can be used to downweight the negative samples if there are too many. It is only used when add_negative_label is True. Defaults to 1.0. float
allow_overlap v3.5.1If True, the data is assumed to contain overlapping spans. It is only available when max_positive is exactly 1. Defaults to True. bool
explosion/spaCy/master/spacy/pipeline/spancat.py

SpanCategorizer.__init__ 方法

创建一个新的管道实例。在您的应用程序中,通常会使用快捷方式,通过其字符串名称并使用nlp.add_pipe来实例化该组件。

名称描述
vocabThe shared vocabulary. Vocab
modelA model instance that is given a a list of documents and (start, end) indices representing candidate span offsets. The model predicts a probability for each category for each span. Model[Tuple[List[Doc],Ragged],Floats2d]
suggesterA function that suggests spans. Spans are returned as a ragged array with two integer columns, for the start and end positions. Callable[[Iterable[Doc], Optional[Ops]],Ragged]
nameString name of the component instance. Used to add entries to the losses during training. str
仅关键字
spans_keyKey of the Doc.spans dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to "sc". str
thresholdMinimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to 0.5. float
max_positiveMaximum number of labels to consider positive per span. Defaults to None, indicating no limit. Optional[int]
allow_overlap v3.5.1If True, the data is assumed to contain overlapping spans. It is only available when max_positive is exactly 1. Defaults to True. bool
add_negative_label v3.5.1Whether to learn to predict a special negative label for each unannotated Span. This should be True when using a Softmax classifier layer and so its True by default for spancat_singlelabel . Spans with negative labels and their scores are not stored as annotations. bool
negative_weight v3.5.1Multiplier for the loss terms. It can be used to downweight the negative samples if there are too many . It is only used when add_negative_label is True. Defaults to 1.0. float

SpanCategorizer.__call__ 方法

将管道应用于单个文档。文档会被原地修改并返回。 这通常在调用nlp对象处理文本时自动完成, 所有管道组件会按顺序应用于Doc对象。 __call__pipe 都会委托给predictset_annotations方法。

名称描述
docThe document to process. Doc

SpanCategorizer.pipe 方法

将管道应用于文档流。这通常在调用nlp对象处理文本时自动完成,所有管道组件会按顺序应用于Doc对象。无论是__call__还是pipe方法,最终都会委托给predictset_annotations方法执行。

名称描述
streamA stream of documents. Iterable[Doc]
仅关键字
batch_sizeThe number of documents to buffer. Defaults to 128. int

SpanCategorizer.initialize 方法

初始化组件以进行训练。get_examples应为一个返回可迭代Example对象的函数。至少需要提供一个示例。这些数据示例用于初始化组件模型,可以是完整的训练数据或代表性样本。初始化过程包括验证网络、推断缺失形状以及根据数据设置标签方案。该方法通常由Language.initialize调用,并允许您通过配置中的[initialize.components]块来自定义接收的参数。

名称描述
get_examplesFunction that returns gold-standard annotations in the form of Example objects. Must contain at least one Example. Callable[[], Iterable[Example]]
仅关键字
nlpThe current nlp object. Defaults to None. Optional[Language]
labelsThe label information to add to the component, as provided by the label_data property after initialization. To generate a reusable JSON file from your data, you should run the init labels command. If no labels are provided, the get_examples callback is used to extract the labels from the data, which may be a lot slower. Optional[Iterable[str]]

SpanCategorizer.predict 方法

在不修改的情况下,将组件的模型应用于一批Doc对象。

名称描述
docsThe documents to predict. Iterable[Doc]

SpanCategorizer.set_annotations 方法

使用预先计算的分数批量修改Doc对象。

名称描述
docsThe documents to modify. Iterable[Doc]
scoresThe scores to set, produced by SpanCategorizer.predict.

SpanCategorizer.update 方法

从一批包含预测和黄金标准标注的Example对象中学习,并更新组件的模型。委托给predictget_loss

名称描述
examplesA batch of Example objects to learn from. Iterable[Example]
仅关键字
dropThe dropout rate. float
sgdAn optimizer. Will be created via create_optimizer if not set. Optional[Optimizer]
lossesOptional record of the loss during training. Updated using the component name as the key. Optional[Dict[str, float]]

SpanCategorizer.set_candidates 方法v3.3

使用建议器将一系列Span候选添加到Doc对象列表中。此方法专为调试目的而设计。

名称描述
docsThe documents to modify. Iterable[Doc]
candidates_keyKey of the Doc.spans dict to save the candidate spans under. str

SpanCategorizer.get_loss 方法

计算这批文档及其预测分数的损失和损失梯度。

名称描述
examplesThe batch of examples. Iterable[Example]
spans_scoresScores representing the model’s predictions. Tuple[Ragged,Floats2d]

SpanCategorizer.create_optimizer 方法

为管道组件创建一个优化器。

名称描述

SpanCategorizer.use_params 方法上下文管理器

修改管道的模型以使用给定的参数值。

名称描述
paramsThe parameter values to use in the model. dict

SpanCategorizer.add_label 方法

向管道添加一个新标签。如果输出维度已设置,或模型已完全初始化,则会引发错误。请注意,如果您向initialize方法提供了代表性数据样本,则无需调用此方法。在这种情况下,样本中发现的所有标签将自动添加到模型中,输出维度将自动推断

名称描述
labelThe label to add. str

SpanCategorizer.to_disk 方法

将管道序列化到磁盘。

名称描述
pathA path to a directory, which will be created if it doesn’t exist. Paths may be either strings or Path-like objects. Union[str,Path]
仅关键字
excludeString names of serialization fields to exclude. Iterable[str]

SpanCategorizer.from_disk 方法

从磁盘加载管道。就地修改对象并返回它。

名称描述
pathA path to a directory. Paths may be either strings or Path-like objects. Union[str,Path]
仅关键字
excludeString names of serialization fields to exclude. Iterable[str]

SpanCategorizer.to_bytes 方法

将管道序列化为字节串。

名称描述
仅关键字
excludeString names of serialization fields to exclude. Iterable[str]

SpanCategorizer.from_bytes 方法

从字节串加载管道。原地修改对象并返回它。

名称描述
bytes_dataThe data to load from. bytes
仅关键字
excludeString names of serialization fields to exclude. Iterable[str]

SpanCategorizer.labels 属性

当前添加到组件中的标签。

名称描述

SpanCategorizer.label_data 属性

当前添加到组件的标签及其内部元信息。 这是由init labels生成的数据,并被 SpanCategorizer.initialize用于 使用预定义的标签集初始化模型。

名称描述

序列化字段

在序列化过程中,spaCy会导出多个用于恢复对象不同方面的数据字段。如果需要,您可以通过exclude参数传入字符串名称来将它们排除在序列化之外。

名称描述
vocabThe shared Vocab.
cfgThe config file. You usually don’t want to exclude this.
modelThe binary model data. You usually don’t want to exclude this.

建议器 已注册函数

spacy.ngram_suggester.v1

建议给定长度的所有跨度。跨度以不规则的整数数组形式返回。该数组有两列,分别表示起始和结束位置。

名称描述
sizesThe phrase lengths to suggest. For example, [1, 2] will suggest phrases consisting of 1 or 2 tokens. List[int]

spacy.ngram_range_suggester.v1

建议所有长度至少为min_size且至多为max_size的跨度(均包含边界值)。跨度以不规则整数数组形式返回。该数组包含两列,分别表示起始和结束位置。

名称描述
min_sizeThe minimal phrase lengths to suggest (inclusive). [int]
max_sizeThe maximal phrase lengths to suggest (inclusive). [int]

spacy.preset_spans_suggester.v1

建议所有已经存储在doc.spans[spans_key]中的span。当使用上游组件(如SpanRulerSpanFinder)在Doc上设置span时,这非常有用。

名称描述
spans_keyKey of Doc.spans that provides spans to suggest. str