SQLGlot是一个无依赖的SQL解析器、转换器、优化器和执行引擎。它可以用于格式化SQL或在24种不同方言之间进行转换,例如DuckDB、Presto/Trino、Spark/Databricks、Snowflake和BigQuery。它的目标是读取各种SQL输入,并以目标方言输出语法和语义都正确的SQL。
这是一个非常全面的通用SQL解析器,拥有强大的测试套件。虽然完全用Python编写,但它也相当高性能。
您可以轻松自定义解析器,分析查询,遍历表达式树,并以编程方式构建SQL。
SQLGlot可以检测多种语法错误,例如不平衡的括号、保留关键字的不正确使用等。这些错误会被高亮显示,根据配置不同,方言不兼容问题可以发出警告或引发错误。
了解更多关于SQLGlot的信息,请参阅API文档和表达式树入门指南。
我们非常欢迎您为SQLGlot做出贡献;请阅读贡献指南和入门文档开始参与!
目录
安装
来自PyPI:
pip3 install "sqlglot[rs]"
# Without Rust tokenizer (slower):
# pip3 install sqlglot
或者使用本地检出:
make install
开发要求(可选):
make install-dev
版本控制
给定一个版本号 MAJOR.MINOR.PATCH,SQLGlot 采用以下版本控制策略:
- 当有向后兼容的修复或功能添加时,
PATCH版本号会增加。 - 当出现不向后兼容的修复或功能添加时,
MINOR版本号会增加。 - 当有重大不兼容修复或功能添加时,
MAJOR版本号会增加。
联系我们
我们很乐意听取您的意见。加入我们的社区Slack频道!
常见问题
我尝试解析本应有效的SQL语句但失败了,为什么会发生这种情况?
- 大多数情况下,这类问题的发生是因为在解析过程中忽略了"源"方言。例如,以下是正确解析用Spark SQL编写的SQL查询的方法:
parse_one(sql, dialect="spark")(或者:read="spark")。如果未指定方言,parse_one将尝试按照"SQLGlot方言"来解析查询,该方言设计为所有支持方言的超集。如果您已尝试指定方言但仍无法工作,请提交问题。
我尝试输出SQL,但它不是正确的方言!
- 与解析类似,生成SQL也需要指定目标方言,否则默认会使用SQLGlot方言。例如,要将查询从Spark SQL转换为DuckDB,可以执行
parse_one(sql, dialect="spark").sql(dialect="duckdb")(或者:transpile(sql, read="spark", write="duckdb"))。
sqlglot.dataframe发生了什么?
- PySpark数据框API在v24版本中被移到了一个名为SQLFrame的独立库中。现在它允许您运行查询,而不仅仅是生成SQL。
示例
格式化与转译
轻松实现不同SQL方言之间的转换。例如,日期/时间函数在不同方言中存在差异,处理起来可能较为困难:
import sqlglot
sqlglot.transpile("SELECT EPOCH_MS(1618088028295)", read="duckdb", write="hive")[0]
'SELECT FROM_UNIXTIME(1618088028295 / POW(10, 3))'
SQLGlot 甚至可以转换自定义时间格式:
import sqlglot
sqlglot.transpile("SELECT STRFTIME(x, '%y-%-m-%S')", read="duckdb", write="hive")[0]
"SELECT DATE_FORMAT(x, 'yy-M-ss')"
标识符分隔符和数据类型也可以进行转换:
import sqlglot
# Spark SQL requires backticks (`) for delimited identifiers and uses `FLOAT` over `REAL`
sql = """WITH baz AS (SELECT a, c FROM foo WHERE a = 1) SELECT f.a, b.b, baz.c, CAST("b"."a" AS REAL) d FROM foo f JOIN bar b ON f.a = b.a LEFT JOIN baz ON f.a = baz.a"""
# Translates the query into Spark SQL, formats it, and delimits all of its identifiers
print(sqlglot.transpile(sql, write="spark", identify=True, pretty=True)[0])
WITH `baz` AS (
SELECT
`a`,
`c`
FROM `foo`
WHERE
`a` = 1
)
SELECT
`f`.`a`,
`b`.`b`,
`baz`.`c`,
CAST(`b`.`a` AS FLOAT) AS `d`
FROM `foo` AS `f`
JOIN `bar` AS `b`
ON `f`.`a` = `b`.`a`
LEFT JOIN `baz`
ON `f`.`a` = `baz`.`a`
注释也会在最大努力的基础上被保留:
sql = """
/* multi
line
comment
*/
SELECT
tbl.cola /* comment 1 */ + tbl.colb /* comment 2 */,
CAST(x AS SIGNED), # comment 3
y -- comment 4
FROM
bar /* comment 5 */,
tbl # comment 6
"""
# Note: MySQL-specific comments (`#`) are converted into standard syntax
print(sqlglot.transpile(sql, read='mysql', pretty=True)[0])
/* multi
line
comment
*/
SELECT
tbl.cola /* comment 1 */ + tbl.colb /* comment 2 */,
CAST(x AS INT), /* comment 3 */
y /* comment 4 */
FROM bar /* comment 5 */, tbl /* comment 6 */
元数据
您可以通过表达式辅助工具探索SQL,例如在查询中查找列和表:
from sqlglot import parse_one, exp
# print all column references (a and b)
for column in parse_one("SELECT a, b + 1 AS c FROM d").find_all(exp.Column):
print(column.alias_or_name)
# find all projections in select statements (a and c)
for select in parse_one("SELECT a, b + 1 AS c FROM d").find_all(exp.Select):
for projection in select.expressions:
print(projection.alias_or_name)
# find all tables (x, y, z)
for table in parse_one("SELECT * FROM x JOIN y JOIN z").find_all(exp.Table):
print(table.name)
阅读ast primer以了解更多关于SQLGlot的内部工作原理。
解析器错误
当解析器检测到语法错误时,它会抛出一个ParseError错误:
import sqlglot
sqlglot.transpile("SELECT foo FROM (SELECT baz FROM t")
sqlglot.errors.ParseError: Expecting ). Line 1, Col: 34.
SELECT foo FROM (SELECT baz FROM t
~
结构化语法错误可供编程使用:
import sqlglot
try:
sqlglot.transpile("SELECT foo FROM (SELECT baz FROM t")
except sqlglot.errors.ParseError as e:
print(e.errors)
[{
'description': 'Expecting )',
'line': 1,
'col': 34,
'start_context': 'SELECT foo FROM (SELECT baz FROM ',
'highlight': 't',
'end_context': '',
'into_expression': None
}]
不支持的报错
It may not be possible to translate some queries between certain dialects. For these cases, SQLGlot may emit a warning and will proceed to do a best-effort translation by default:
import sqlglot
sqlglot.transpile("SELECT APPROX_DISTINCT(a, 0.1) FROM foo", read="presto", write="hive")
APPROX_COUNT_DISTINCT does not support accuracy
'SELECT APPROX_COUNT_DISTINCT(a) FROM foo'
可以通过设置unsupported_level属性来改变此行为。例如,我们可以将其设置为RAISE或IMMEDIATE以确保抛出异常:
import sqlglot
sqlglot.transpile("SELECT APPROX_DISTINCT(a, 0.1) FROM foo", read="presto", write="hive", unsupported_level=sqlglot.ErrorLevel.RAISE)
sqlglot.errors.UnsupportedError: APPROX_COUNT_DISTINCT does not support accuracy
有些查询需要额外信息才能准确转译,例如查询中引用的表结构信息。这是因为某些转换是类型敏感的,意味着需要类型推断才能理解其语义。虽然qualify和annotate_types优化器规则可以辅助处理这种情况,但默认情况下不会启用它们,因为它们会带来显著的性能开销和复杂性。
SQL转译通常是一个复杂的问题,因此SQLGlot采用"渐进式"方法来解决。这意味着目前某些方言组合可能缺乏对部分输入的支持,但预计这种情况会随着时间推移而改善。我们非常欢迎有详细文档说明和经过测试的问题或PR,如需指导请随时联系我们!
构建和修改SQL
SQLGlot支持逐步构建SQL表达式:
from sqlglot import select, condition
where = condition("x=1").and_("y=1")
select("*").from_("y").where(where).sql()
'SELECT * FROM y WHERE x = 1 AND y = 1'
可以修改解析后的语法树:
from sqlglot import parse_one
parse_one("SELECT x FROM y").from_("z").sql()
'SELECT x FROM z'
解析后的表达式也可以通过向树中的每个节点应用映射函数来进行递归转换:
from sqlglot import exp, parse_one
expression_tree = parse_one("SELECT a FROM x")
def transformer(node):
if isinstance(node, exp.Column) and node.name == "a":
return parse_one("FUN(a)")
return node
transformed_tree = expression_tree.transform(transformer)
transformed_tree.sql()
'SELECT FUN(a) FROM x'
SQL优化器
SQLGlot可以将查询重写为"优化"形式。它运用多种技术来创建新的规范AST。这个AST可用于标准化查询或为实现实际引擎奠定基础。例如:
import sqlglot
from sqlglot.optimizer import optimize
print(
optimize(
sqlglot.parse_one("""
SELECT A OR (B OR (C AND D))
FROM x
WHERE Z = date '2021-01-01' + INTERVAL '1' month OR 1 = 0
"""),
schema={"x": {"A": "INT", "B": "INT", "C": "INT", "D": "INT", "Z": "STRING"}}
).sql(pretty=True)
)
SELECT
(
"x"."a" <> 0 OR "x"."b" <> 0 OR "x"."c" <> 0
)
AND (
"x"."a" <> 0 OR "x"."b" <> 0 OR "x"."d" <> 0
) AS "_col_0"
FROM "x" AS "x"
WHERE
CAST("x"."z" AS DATE) = CAST('2021-02-01' AS DATE)
AST 内省
您可以通过调用repr来查看解析后SQL的AST版本:
from sqlglot import parse_one
print(repr(parse_one("SELECT a + 1 AS z")))
Select(
expressions=[
Alias(
this=Add(
this=Column(
this=Identifier(this=a, quoted=False)),
expression=Literal(this=1, is_string=False)),
alias=Identifier(this=z, quoted=False))])
AST差异
SQLGlot可以计算两个表达式之间的语义差异,并以将源表达式转换为目标表达式所需的一系列操作的形式输出变更:
from sqlglot import diff, parse_one
diff(parse_one("SELECT a + b, c, d"), parse_one("SELECT c, a - b, d"))
[
Remove(expression=Add(
this=Column(
this=Identifier(this=a, quoted=False)),
expression=Column(
this=Identifier(this=b, quoted=False)))),
Insert(expression=Sub(
this=Column(
this=Identifier(this=a, quoted=False)),
expression=Column(
this=Identifier(this=b, quoted=False)))),
Keep(
source=Column(this=Identifier(this=a, quoted=False)),
target=Column(this=Identifier(this=a, quoted=False))),
...
]
另请参阅:SQL语义差异。
自定义方言
Dialects 可以通过继承 Dialect 类来添加:
from sqlglot import exp
from sqlglot.dialects.dialect import Dialect
from sqlglot.generator import Generator
from sqlglot.tokens import Tokenizer, TokenType
class Custom(Dialect):
class Tokenizer(Tokenizer):
QUOTES = ["'", '"']
IDENTIFIERS = ["`"]
KEYWORDS = {
**Tokenizer.KEYWORDS,
"INT64": TokenType.BIGINT,
"FLOAT64": TokenType.DOUBLE,
}
class Generator(Generator):
TRANSFORMS = {exp.Array: lambda self, e: f"[{self.expressions(e)}]"}
TYPE_MAPPING = {
exp.DataType.Type.TINYINT: "INT64",
exp.DataType.Type.SMALLINT: "INT64",
exp.DataType.Type.INT: "INT64",
exp.DataType.Type.BIGINT: "INT64",
exp.DataType.Type.DECIMAL: "NUMERIC",
exp.DataType.Type.FLOAT: "FLOAT64",
exp.DataType.Type.DOUBLE: "FLOAT64",
exp.DataType.Type.BOOLEAN: "BOOL",
exp.DataType.Type.TEXT: "STRING",
}
print(Dialect["custom"])
<class '__main__.Custom'>
SQL执行
SQLGlot能够解析SQL查询,其中表被表示为Python字典。该引擎并不追求速度,但对于单元测试和在Python对象上原生运行SQL非常有用。此外,其基础可以轻松与快速计算内核(如Arrow和Pandas)集成。
下面的示例展示了一个涉及聚合和连接操作的查询执行:
from sqlglot.executor import execute
tables = {
"sushi": [
{"id": 1, "price": 1.0},
{"id": 2, "price": 2.0},
{"id": 3, "price": 3.0},
],
"order_items": [
{"sushi_id": 1, "order_id": 1},
{"sushi_id": 1, "order_id": 1},
{"sushi_id": 2, "order_id": 1},
{"sushi_id": 3, "order_id": 2},
],
"orders": [
{"id": 1, "user_id": 1},
{"id": 2, "user_id": 2},
],
}
execute(
"""
SELECT
o.user_id,
SUM(s.price) AS price
FROM orders o
JOIN order_items i
ON o.id = i.order_id
JOIN sushi s
ON i.sushi_id = s.id
GROUP BY o.user_id
""",
tables=tables
)
user_id price
1 4.0
2 3.0
另请参阅:Writing a Python SQL engine from scratch。
使用者
文档
SQLGlot使用pdoc来提供其API文档。
托管版本可在SQLGlot网站上获取,或者您可以通过以下方式在本地构建:
make docs-serve
运行测试与代码检查
make style # Only linter checks
make unit # Only unit tests (or unit-rs, to use the Rust tokenizer)
make test # Unit and integration tests (or test-rs, to use the Rust tokenizer)
make check # Full test suite & linter checks
基准测试
Benchmarks 在Python 3.10.12上运行的基准测试结果(单位为秒)。
| 查询 | sqlglot | sqlglotrs | sqlfluff | sqltree | sqlparse | moz_sql_parser | sqloxide |
|---|---|---|---|---|---|---|---|
| tpch | 0.00944 (1.0) | 0.00590 (0.625) | 0.32116 (33.98) | 0.00693 (0.734) | 0.02858 (3.025) | 0.03337 (3.532) | 0.00073 (0.077) |
| short | 0.00065 (1.0) | 0.00044 (0.687) | 0.03511 (53.82) | 0.00049 (0.759) | 0.00163 (2.506) | 0.00234 (3.601) | 0.00005 (0.073) |
| long | 0.00889 (1.0) | 0.00572 (0.643) | 0.36982 (41.56) | 0.00614 (0.690) | 0.02530 (2.844) | 0.02931 (3.294) | 0.00059 (0.066) |
| crazy | 0.02918 (1.0) | 0.01991 (0.682) | 1.88695 (64.66) | 0.02003 (0.686) | 7.46894 (255.9) | 0.64994 (22.27) | 0.00327 (0.112) |
可选依赖项
SQLGlot使用dateutil来简化字面时间差表达式。如果找不到该模块,优化器将不会简化如下表达式:
x + interval '1' month
1# ruff: noqa: F401 2""" 3.. include:: ../README.md 4 5---- 6""" 7 8from __future__ import annotations 9 10import logging 11import typing as t 12 13from sqlglot import expressions as exp 14from sqlglot.dialects.dialect import Dialect as Dialect, Dialects as Dialects 15from sqlglot.diff import diff as diff 16from sqlglot.errors import ( 17 ErrorLevel as ErrorLevel, 18 ParseError as ParseError, 19 TokenError as TokenError, 20 UnsupportedError as UnsupportedError, 21) 22from sqlglot.expressions import ( 23 Expression as Expression, 24 alias_ as alias, 25 and_ as and_, 26 case as case, 27 cast as cast, 28 column as column, 29 condition as condition, 30 delete as delete, 31 except_ as except_, 32 from_ as from_, 33 func as func, 34 insert as insert, 35 intersect as intersect, 36 maybe_parse as maybe_parse, 37 merge as merge, 38 not_ as not_, 39 or_ as or_, 40 select as select, 41 subquery as subquery, 42 table_ as table, 43 to_column as to_column, 44 to_identifier as to_identifier, 45 to_table as to_table, 46 union as union, 47) 48from sqlglot.generator import Generator as Generator 49from sqlglot.parser import Parser as Parser 50from sqlglot.schema import MappingSchema as MappingSchema, Schema as Schema 51from sqlglot.tokens import Token as Token, Tokenizer as Tokenizer, TokenType as TokenType 52 53if t.TYPE_CHECKING: 54 from sqlglot._typing import E 55 from sqlglot.dialects.dialect import DialectType as DialectType 56 57logger = logging.getLogger("sqlglot") 58 59 60try: 61 from sqlglot._version import __version__, __version_tuple__ 62except ImportError: 63 logger.error( 64 "Unable to set __version__, run `pip install -e .` or `python setup.py develop` first." 65 ) 66 67 68pretty = False 69"""Whether to format generated SQL by default.""" 70 71 72def tokenize(sql: str, read: DialectType = None, dialect: DialectType = None) -> t.List[Token]: 73 """ 74 Tokenizes the given SQL string. 75 76 Args: 77 sql: the SQL code string to tokenize. 78 read: the SQL dialect to apply during tokenizing (eg. "spark", "hive", "presto", "mysql"). 79 dialect: the SQL dialect (alias for read). 80 81 Returns: 82 The resulting list of tokens. 83 """ 84 return Dialect.get_or_raise(read or dialect).tokenize(sql) 85 86 87def parse( 88 sql: str, read: DialectType = None, dialect: DialectType = None, **opts 89) -> t.List[t.Optional[Expression]]: 90 """ 91 Parses the given SQL string into a collection of syntax trees, one per parsed SQL statement. 92 93 Args: 94 sql: the SQL code string to parse. 95 read: the SQL dialect to apply during parsing (eg. "spark", "hive", "presto", "mysql"). 96 dialect: the SQL dialect (alias for read). 97 **opts: other `sqlglot.parser.Parser` options. 98 99 Returns: 100 The resulting syntax tree collection. 101 """ 102 return Dialect.get_or_raise(read or dialect).parse(sql, **opts) 103 104 105@t.overload 106def parse_one(sql: str, *, into: t.Type[E], **opts) -> E: ... 107 108 109@t.overload 110def parse_one(sql: str, **opts) -> Expression: ... 111 112 113def parse_one( 114 sql: str, 115 read: DialectType = None, 116 dialect: DialectType = None, 117 into: t.Optional[exp.IntoType] = None, 118 **opts, 119) -> Expression: 120 """ 121 Parses the given SQL string and returns a syntax tree for the first parsed SQL statement. 122 123 Args: 124 sql: the SQL code string to parse. 125 read: the SQL dialect to apply during parsing (eg. "spark", "hive", "presto", "mysql"). 126 dialect: the SQL dialect (alias for read) 127 into: the SQLGlot Expression to parse into. 128 **opts: other `sqlglot.parser.Parser` options. 129 130 Returns: 131 The syntax tree for the first parsed statement. 132 """ 133 134 dialect = Dialect.get_or_raise(read or dialect) 135 136 if into: 137 result = dialect.parse_into(into, sql, **opts) 138 else: 139 result = dialect.parse(sql, **opts) 140 141 for expression in result: 142 if not expression: 143 raise ParseError(f"No expression was parsed from '{sql}'") 144 return expression 145 else: 146 raise ParseError(f"No expression was parsed from '{sql}'") 147 148 149def transpile( 150 sql: str, 151 read: DialectType = None, 152 write: DialectType = None, 153 identity: bool = True, 154 error_level: t.Optional[ErrorLevel] = None, 155 **opts, 156) -> t.List[str]: 157 """ 158 Parses the given SQL string in accordance with the source dialect and returns a list of SQL strings transformed 159 to conform to the target dialect. Each string in the returned list represents a single transformed SQL statement. 160 161 Args: 162 sql: the SQL code string to transpile. 163 read: the source dialect used to parse the input string (eg. "spark", "hive", "presto", "mysql"). 164 write: the target dialect into which the input should be transformed (eg. "spark", "hive", "presto", "mysql"). 165 identity: if set to `True` and if the target dialect is not specified the source dialect will be used as both: 166 the source and the target dialect. 167 error_level: the desired error level of the parser. 168 **opts: other `sqlglot.generator.Generator` options. 169 170 Returns: 171 The list of transpiled SQL statements. 172 """ 173 write = (read if write is None else write) if identity else write 174 write = Dialect.get_or_raise(write) 175 return [ 176 write.generate(expression, copy=False, **opts) if expression else "" 177 for expression in parse(sql, read, error_level=error_level) 178 ]
是否默认格式化生成的SQL。
73def tokenize(sql: str, read: DialectType = None, dialect: DialectType = None) -> t.List[Token]: 74 """ 75 Tokenizes the given SQL string. 76 77 Args: 78 sql: the SQL code string to tokenize. 79 read: the SQL dialect to apply during tokenizing (eg. "spark", "hive", "presto", "mysql"). 80 dialect: the SQL dialect (alias for read). 81 82 Returns: 83 The resulting list of tokens. 84 """ 85 return Dialect.get_or_raise(read or dialect).tokenize(sql)
对给定的SQL字符串进行词法分析。
参数:
- sql: 要标记化的SQL代码字符串。
- read: 在标记化过程中要应用的SQL方言(例如:"spark"、"hive"、"presto"、"mysql")。
- dialect: SQL方言(read的别名)。
返回值:
生成的令牌列表。
88def parse( 89 sql: str, read: DialectType = None, dialect: DialectType = None, **opts 90) -> t.List[t.Optional[Expression]]: 91 """ 92 Parses the given SQL string into a collection of syntax trees, one per parsed SQL statement. 93 94 Args: 95 sql: the SQL code string to parse. 96 read: the SQL dialect to apply during parsing (eg. "spark", "hive", "presto", "mysql"). 97 dialect: the SQL dialect (alias for read). 98 **opts: other `sqlglot.parser.Parser` options. 99 100 Returns: 101 The resulting syntax tree collection. 102 """ 103 return Dialect.get_or_raise(read or dialect).parse(sql, **opts)
将给定的SQL字符串解析为语法树集合,每个解析的SQL语句对应一棵语法树。
参数:
- sql: 要解析的SQL代码字符串。
- read: 解析时应用的SQL方言(例如:"spark", "hive", "presto", "mysql")。
- dialect: SQL方言(read的别名)。
- **opts: 其他
sqlglot.parser.Parser选项。
返回值:
生成的语法树集合。
114def parse_one( 115 sql: str, 116 read: DialectType = None, 117 dialect: DialectType = None, 118 into: t.Optional[exp.IntoType] = None, 119 **opts, 120) -> Expression: 121 """ 122 Parses the given SQL string and returns a syntax tree for the first parsed SQL statement. 123 124 Args: 125 sql: the SQL code string to parse. 126 read: the SQL dialect to apply during parsing (eg. "spark", "hive", "presto", "mysql"). 127 dialect: the SQL dialect (alias for read) 128 into: the SQLGlot Expression to parse into. 129 **opts: other `sqlglot.parser.Parser` options. 130 131 Returns: 132 The syntax tree for the first parsed statement. 133 """ 134 135 dialect = Dialect.get_or_raise(read or dialect) 136 137 if into: 138 result = dialect.parse_into(into, sql, **opts) 139 else: 140 result = dialect.parse(sql, **opts) 141 142 for expression in result: 143 if not expression: 144 raise ParseError(f"No expression was parsed from '{sql}'") 145 return expression 146 else: 147 raise ParseError(f"No expression was parsed from '{sql}'")
解析给定的SQL字符串并返回第一个解析的SQL语句的语法树。
参数:
- sql: 要解析的SQL代码字符串。
- read: 在解析过程中应用的SQL方言(例如:"spark"、"hive"、"presto"、"mysql")。
- dialect: SQL方言(是read的别名)
- into: 要解析为的SQLGlot表达式。
- **opts: 其他
sqlglot.parser.Parser选项。
返回值:
第一个解析语句的语法树。
150def transpile( 151 sql: str, 152 read: DialectType = None, 153 write: DialectType = None, 154 identity: bool = True, 155 error_level: t.Optional[ErrorLevel] = None, 156 **opts, 157) -> t.List[str]: 158 """ 159 Parses the given SQL string in accordance with the source dialect and returns a list of SQL strings transformed 160 to conform to the target dialect. Each string in the returned list represents a single transformed SQL statement. 161 162 Args: 163 sql: the SQL code string to transpile. 164 read: the source dialect used to parse the input string (eg. "spark", "hive", "presto", "mysql"). 165 write: the target dialect into which the input should be transformed (eg. "spark", "hive", "presto", "mysql"). 166 identity: if set to `True` and if the target dialect is not specified the source dialect will be used as both: 167 the source and the target dialect. 168 error_level: the desired error level of the parser. 169 **opts: other `sqlglot.generator.Generator` options. 170 171 Returns: 172 The list of transpiled SQL statements. 173 """ 174 write = (read if write is None else write) if identity else write 175 write = Dialect.get_or_raise(write) 176 return [ 177 write.generate(expression, copy=False, **opts) if expression else "" 178 for expression in parse(sql, read, error_level=error_level) 179 ]
根据源方言解析给定的SQL字符串,并返回一个转换后的SQL字符串列表,使其符合目标方言。返回列表中的每个字符串代表一个单独的转换后的SQL语句。
参数:
- sql: 要转换的SQL代码字符串。
- read: 用于解析输入字符串的源方言(例如:"spark", "hive", "presto", "mysql")。
- write: 输入应该转换成的目标方言(例如:"spark", "hive", "presto", "mysql")。
- identity: 如果设置为
True且未指定目标方言,则源方言将同时用作源方言和目标方言。 - error_level: 解析器所需的错误级别。
- **opts: 其他
sqlglot.generator.Generator选项。
返回值:
转换后的SQL语句列表。