statsmodels.tsa.deterministic.CalendarSeasonality¶
- class statsmodels.tsa.deterministic.CalendarSeasonality(freq, period)[source]¶
基于日历时间的季节性虚拟确定性项
示例
这里我们模拟不规则间隔的数据(在时间上)并为数据生成每小时的季节性虚拟变量。
>>> import numpy as np >>> import pandas as pd >>> base = pd.Timestamp("2020-1-1") >>> gen = np.random.default_rng() >>> gaps = np.cumsum(gen.integers(0, 1800, size=1000)) >>> times = [base + pd.Timedelta(gap, unit="s") for gap in gaps] >>> index = pd.DatetimeIndex(pd.to_datetime(times))>>> from statsmodels.tsa.deterministic import CalendarSeasonality >>> cal_seas_gen = CalendarSeasonality("H", "D") >>> cal_seas_gen.in_sample(index)方法
in_sample(index)生成用于样本内拟合的确定性趋势。
out_of_sample(步骤, 索引[, 预测索引])为样本外预测生成确定性趋势
属性
确定性项的频率
指示生成的值是否为虚拟变量的标志
完整周期
Last update:
Oct 16, 2024