torcheval.metrics.functional.binary_binned_precision_recall_curve¶
- torcheval.metrics.functional.binary_binned_precision_recall_curve(input: Tensor, target: Tensor, *, threshold: int | List[float] | Tensor = 100) Tuple[Tensor, Tensor, Tensor]¶
使用给定的阈值计算精确率-召回率曲线。 其类版本为
torcheval.metrics.BinaryBinnedPrecisionRecallCurve。- Parameters:
input (Tensor) – 标签预测的张量 它应该是形状为 (n_sample, ) 的概率或对数几率。
target (Tensor) – 形状为 (n_samples, ) 的真实标签张量。
threshold – 一个表示分箱数量的整数,一个阈值列表,或一个阈值张量。
- Returns:
precision (Tensor): 精度结果的张量。其形状为 (n_thresholds + 1, )
recall (Tensor): 召回率结果的张量。其形状为 (n_thresholds + 1, )
thresholds (Tensor): 阈值的张量。其形状为 (n_thresholds, )
- Return type:
元组
示例:
>>> import torch >>> from torcheval.metrics.functional import binary_binned_precision_recall_curve >>> input = torch.tensor([0.2, 0.8, 0.5, 0.9]) >>> target = torch.tensor([0, 1, 0, 1]) >>> threshold = 5 >>> binary_binned_precision_recall_curve(input, target, threshold) (tensor([0.5000, 0.6667, 0.6667, 1.0000, 1.0000, 1.0000]), tensor([1., 1., 1., 1., 0., 0.]), tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000])) >>> input = torch.tensor([0.2, 0.3, 0.4, 0.5]) >>> target = torch.tensor([0, 0, 1, 1]) >>> threshold = torch.tensor([0.0000, 0.2500, 0.7500, 1.0000]) >>> binary_binned_precision_recall_curve(input, target, threshold) (tensor([0.5000, 0.6667, 1.0000, 1.0000, 1.0000]), tensor([1., 1., 0., 0., 0.]), tensor([0.0000, 0.2500, 0.7500, 1.0000]))