Shortcuts

torcheval.metrics.functional.perplexity

torcheval.metrics.functional.perplexity(input: Tensor, target: Tensor, ignore_index: int | None = None) Tensor

困惑度衡量模型预测样本数据的能力。它的计算方法是:

困惑度 = exp (负对数似然的总和 / 标记数量)

它的类版本是 torcheval.metrics.text.Perplexity

Parameters:
  • 输入 (张量) – 每个标记的预测未归一化分数(即logits),形状为 (n_samples, seq_len, vocab_size)

  • target (Tensor) – 形状为 (n_samples, seq_len) 的真实词汇索引张量。

  • ignore_index (Tensor) – 如果指定,则在计算困惑度时将忽略带有‘ignore_index’的目标类别。默认值为None。

Returns:

输入和目标的困惑度。

Return type:

(张量)

示例

>>> import torch
>>> from torcheval.metrics.functional.text import perplexity
>>> input = torch.tensor([[[0.3659, 0.7025, 0.3104], [0.0097, 0.6577, 0.1947]]])
>>> target = torch.tensor([[2, 1]])
>>> perplexity(input, target)
tensor(2.7593, dtype=torch.float64)
>>> input = torch.tensor([[[0.3, 0.7, 0.3, 0.1], [0.5, 0.4, 0.1, 0.4],[0.1, 0.1, 0.2, 0.5]], [[0.1, 0.6, 0.1, 0.5], [0.3, 0.7, 0.3, 0.4], [0.3, 0.7, 0.3, 0.4]]])
>>> target = torch.tensor([[2, 1, 3],  [1, 0, 1]])
>>> perplexity(input, target)
tensor(3.6216, dtype=torch.float64)
>>> input = torch.tensor([[[0.3659, 0.7025, 0.3104], [0.0097, 0.6577, 0.1947]]])
>>> target = torch.tensor([[2, 1]])
>>> perplexity(input, target, ignore_index = 1)
tensor(3.5372, dtype=torch.float64)