Shortcuts

准备层丢弃

torchtune.modules.prepare_layer_dropout(layers: Union[ModuleList, Iterable[Module]], prob_max: float = 0.0, prob_layer_scale: Optional[ScaleType] = ScaleType.UNIFORM, layers_str: Optional[str] = None, disable_on_eval: Optional[bool] = True) None[source]

通过将每个层用ModuleLayerDropoutWrapper包装,为模型的层准备层丢弃。 此函数接收一个层列表、丢弃层的最大概率、层丢弃概率的缩放类型、指定应用丢弃的层的字符串, 以及一个布尔值,指示在评估期间是否禁用丢弃。然后,它将模型的每个层就地包装在 ModuleLayerDropoutWrapper中,该包装器对输入张量应用层丢弃。

Parameters:
  • layers (Union[torch.nn.ModuleList, Iterable[torch.nn.Module]]) – 用于层丢弃的层列表。

  • prob_max (float) – 丢弃层的最大概率。默认为0.0。

  • prob_layer_scale (可选[ScaleType]) – 跨层的dropout概率的缩放类型。默认为 ScaleType.UNIFORM。

  • layers_str (可选[str]) – 一个字符串,指定要应用dropout的层。默认为None,表示应用于所有层。

  • disable_on_eval (可选[bool]) – 是否在评估期间禁用dropout。默认为True。

Returns:

示例

>>> import torch
>>> from torch import nn
>>> # Define a simple model
>>> class MyModel(nn.Module):
...     def __init__(self):
...         super().__init__()
...         self.layers = nn.ModuleList([
...             nn.Linear(5, 3),
...             nn.Linear(3, 2),
...             nn.Linear(2, 1),
...             nn.Linear(1, 2),
...             nn.Linear(2, 3),
...         ])
...
...     def forward(self, x):
...         for layer in self.layers:
...             x = layer(x)
...         return x
>>> model = MyModel()
>>> # Apply layer dropout uniformly to all layers
>>> prepare_layer_dropout(model.layers, prob_max=0.2, prob_layer_scale=ScaleType.UNIFORM)
>>> # Apply layer dropout every other layer, as described in LayerDrop paper
    (Fan et al., https://arxiv.org/abs/1909.11556v1)
>>> prepare_layer_dropout(model.layers, prob_max=0.2, prob_layer_scale=ScaleType.UNIFORM, layers_str="::2")
>>> # Apply layer dropout that increases linearly across layers, as described in Progressive Layer
    Dropout paper (Zhang et al., https://arxiv.org/abs/2010.13369)
>>> prepare_layer_dropout(model.layers, prob_max=0.2, prob_layer_scale=ScaleType.LINEAR)
>>> # Apply layer dropout that increases exponentially across layers, as described in
    LayerSkip paper (Elhoushi et al., https://arxiv.org/abs/2404.16710)
>>> prepare_layer_dropout(model.layers, prob_max=0.2, prob_layer_scale=ScaleType.EXP)