Shortcuts

随机调整大小

class torchvision.transforms.v2.RandomResize(min_size: int, max_size: int, interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, antialias: Optional[bool] = True)[source]

随机调整输入的大小。

此转换可以与RandomCrop一起使用,作为数据增强来训练图像分割任务的模型。

输出空间大小是从区间 [min_size, max_size] 中随机采样的:

size = uniform_sample(min_size, max_size)
output_width = size
output_height = size

如果输入是torch.TensorTVTensor(例如Image视频BoundingBoxes等), 它可以有任意数量的前导批次维度。例如, 图像可以有[..., C, H, W]形状。边界框可以有[..., 4]形状。

Parameters:
  • min_size (int) – 随机采样的最小输出大小

  • max_size (int) – 随机采样的最大输出大小

  • 插值 (InterpolationMode, 可选) – 由 torchvision.transforms.InterpolationMode 定义的所需插值枚举。默认值为 InterpolationMode.BILINEAR。 如果输入是张量,则仅支持 InterpolationMode.NEAREST, InterpolationMode.NEAREST_EXACT, InterpolationMode.BILINEARInterpolationMode.BICUBIC。 也接受相应的 Pillow 整数常量,例如 PIL.Image.BILINEAR

  • antialias (bool, optional) –

    是否应用抗锯齿。 它只影响具有双线性或双三次模式的张量,否则会被忽略:在PIL图像上,双线性或双三次模式总是应用抗锯齿;在其他模式(对于PIL图像和张量)上,抗锯齿没有意义,此参数会被忽略。 可能的值为:

    • True (默认): 将对双线性或双三次模式应用抗锯齿。 其他模式不受影响。这可能是你想要使用的。

    • False: 不会对任何模式的张量应用抗锯齿。PIL 图像在双线性或双三次模式下仍然应用抗锯齿,因为 PIL不支持无抗锯齿。

    • None: 对于张量等同于False,对于 PIL图像等同于True。此值存在是为了兼容旧版本,除非你确实知道自己在做什么,否则你可能不想使用它。

    默认值在v0.17版本中从None更改为True,以使PIL和Tensor后端保持一致。