Shortcuts

ResNet

ResNet模型基于Deep Residual Learning for Image Recognition论文。

注意

TorchVision的瓶颈将下采样的步幅放置在第二个3x3卷积中,而原始论文将其放置在第一个1x1卷积中。这种变体提高了准确性,被称为ResNet V1.5

模型构建器

以下模型构建器可用于实例化ResNet模型,无论是否使用预训练权重。所有模型构建器内部都依赖于torchvision.models.resnet.ResNet基类。有关此类的更多详细信息,请参阅源代码

resnet18(*[, weights, progress])

ResNet-18 来自 Deep Residual Learning for Image Recognition.

resnet34(*[, weights, progress])

ResNet-34 来自 Deep Residual Learning for Image Recognition.

resnet50(*[, weights, progress])

ResNet-50 来自 Deep Residual Learning for Image Recognition.

resnet101(*[, weights, progress])

ResNet-101 来自 Deep Residual Learning for Image Recognition.

resnet152(*[, weights, progress])

ResNet-152 来自 Deep Residual Learning for Image Recognition.