快速入门#

先决条件#

支持的设备#

  • Atlas A2训练系列(Atlas 800T A2、Atlas 900 A2 PoD、Atlas 200T A2 Box16、Atlas 300T A2)

  • Atlas 800I A2推理系列 (Atlas 800I A2)

使用容器设置环境#

# Update DEVICE according to your device (/dev/davinci[0-7])
export DEVICE=/dev/davinci0
# Update the vllm-ascend image
export IMAGE=quay.io/ascend/vllm-ascend:v0.7.3.post1
docker run --rm \
--name vllm-ascend \
--device $DEVICE \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v /root/.cache:/root/.cache \
-p 8000:8000 \
-it $IMAGE bash

默认工作目录是/workspace,vLLM和vLLM Ascend代码存放在/vllm-workspace中,并以开发模式(pip install -e)安装,这样开发者可以立即应用更改而无需重新安装。

(可选) 安装MindIE Turbo#

安装MindIE Turbo以获得性能加速:

pip install mindie_turbo==2.0rc1

使用方法#

您可以使用Modelscope镜像来加速下载:

export VLLM_USE_MODELSCOPE=true

在昇腾NPU上启动vLLM有两种方式:

安装vLLM后,您可以开始为输入提示列表生成文本(即离线批量推理)。

尝试直接运行以下Python脚本或使用python3交互式环境生成文本:

from vllm import LLM, SamplingParams

prompts = [
    "Hello, my name is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# The first run will take about 3-5 mins (10 MB/s) to download models
llm = LLM(model="Qwen/Qwen2.5-0.5B-Instruct")

outputs = llm.generate(prompts, sampling_params)

for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

vLLM也可以部署为实现了OpenAI API协议的服务器。运行以下命令以使用Qwen/Qwen2.5-0.5B-Instruct模型启动vLLM服务器:

# Deploy vLLM server (The first run will take about 3-5 mins (10 MB/s) to download models)
vllm serve Qwen/Qwen2.5-0.5B-Instruct &

如果看到如下日志:

INFO:     Started server process [3594]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

恭喜,您已成功启动vLLM服务器!

您可以查询模型列表:

curl http://localhost:8000/v1/models | python3 -m json.tool

您也可以通过输入提示词查询模型:

curl http://localhost:8000/v1/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "Qwen/Qwen2.5-0.5B-Instruct",
        "prompt": "Beijing is a",
        "max_tokens": 5,
        "temperature": 0
    }' | python3 -m json.tool

vLLM作为后台进程运行,您可以使用kill -2 $VLLM_PID优雅地停止后台进程, 这等同于在前台使用Ctrl-C停止vLLM进程:

ps -ef | grep "/.venv/bin/vllm serve" | grep -v grep
VLLM_PID=`ps -ef | grep "/.venv/bin/vllm serve" | grep -v grep | awk '{print $2}'`
kill -2 $VLLM_PID

您将看到如下输出:

INFO:     Shutting down FastAPI HTTP server.
INFO:     Shutting down
INFO:     Waiting for application shutdown.
INFO:     Application shutdown complete.

最后,您可以使用ctrl-D退出容器。