autogen_ext.tools.graphrag#
- pydantic model GlobalContextConfig[源代码]#
基础:
ContextConfig
Show JSON schema
{ "title": "GlobalContextConfig", "type": "object", "properties": { "max_data_tokens": { "default": 12000, "title": "Max Data Tokens", "type": "integer" }, "use_community_summary": { "default": false, "title": "Use Community Summary", "type": "boolean" }, "shuffle_data": { "default": true, "title": "Shuffle Data", "type": "boolean" }, "include_community_rank": { "default": true, "title": "Include Community Rank", "type": "boolean" }, "min_community_rank": { "default": 0, "title": "Min Community Rank", "type": "integer" }, "community_rank_name": { "default": "rank", "title": "Community Rank Name", "type": "string" }, "include_community_weight": { "default": true, "title": "Include Community Weight", "type": "boolean" }, "community_weight_name": { "default": "occurrence weight", "title": "Community Weight Name", "type": "string" }, "normalize_community_weight": { "default": true, "title": "Normalize Community Weight", "type": "boolean" } } }
- Fields:
community_rank_name (str)
community_weight_name (str)
include_community_rank (bool)
include_community_weight (bool)
max_data_tokens (int)
min_community_rank (int)
normalize_community_weight (bool)
shuffle_data (bool)
use_community_summary (bool)
- pydantic model GlobalDataConfig[源代码]#
基类:
DataConfig
Show JSON schema
{ "title": "GlobalDataConfig", "type": "object", "properties": { "input_dir": { "title": "Input Dir", "type": "string" }, "entity_table": { "default": "create_final_nodes", "title": "Entity Table", "type": "string" }, "entity_embedding_table": { "default": "create_final_entities", "title": "Entity Embedding Table", "type": "string" }, "community_level": { "default": 2, "title": "Community Level", "type": "integer" }, "community_table": { "default": "create_final_communities", "title": "Community Table", "type": "string" }, "community_report_table": { "default": "create_final_community_reports", "title": "Community Report Table", "type": "string" } }, "required": [ "input_dir" ] }
- Fields:
community_report_table (str)
community_table (str)
- class GlobalSearchTool(token_encoder: Encoding, llm: BaseLLM, data_config: GlobalDataConfig, context_config: GlobalContextConfig = _default_context_config, mapreduce_config: MapReduceConfig = _default_mapreduce_config)[源代码]#
基础类:
BaseTool
[GlobalSearchToolArgs
,GlobalSearchToolReturn
]支持将GraphRAG全局搜索查询作为AutoGen工具运行。
该工具允许您使用GraphRAG框架对文档集合执行语义搜索。此搜索结合了基于图的文档关系和语义嵌入,以找到相关信息。
注意
此工具需要为
autogen-ext
包安装graphrag
额外组件。安装步骤:
pip install -U "autogen-agentchat" "autogen-ext[graphrag]"
在使用此工具之前,您必须完成GraphRAG的安装和索引过程:
按照GraphRAG文档初始化您的项目和设置
为特定用例配置和调整您的提示
运行索引过程以生成所需的数据文件
确保您拥有来自设置过程的settings.yaml文件
请参考 [GraphRAG 文档](https://microsoft.github.io/graphrag/) 获取完成这些先决步骤的详细说明。
使用 AssistantAgent 的示例:
import asyncio from autogen_ext.models.openai import OpenAIChatCompletionClient from autogen_agentchat.ui import Console from autogen_ext.tools.graphrag import GlobalSearchTool from autogen_agentchat.agents import AssistantAgent async def main(): # Initialize the OpenAI client openai_client = OpenAIChatCompletionClient( model="gpt-4o-mini", api_key="<api-key>", ) # Set up global search tool global_tool = GlobalSearchTool.from_settings(settings_path="./settings.yaml") # Create assistant agent with the global search tool assistant_agent = AssistantAgent( name="search_assistant", tools=[global_tool], model_client=openai_client, system_message=( "You are a tool selector AI assistant using the GraphRAG framework. " "Your primary task is to determine the appropriate search tool to call based on the user's query. " "For broader, abstract questions requiring a comprehensive understanding of the dataset, call the 'global_search' function." ), ) # Run a sample query query = "What is the overall sentiment of the community reports?" await Console(assistant_agent.run_stream(task=query)) if __name__ == "__main__": asyncio.run(main())
- classmethod from_settings(settings_path: str | 路径) GlobalSearchTool [源代码]#
从GraphRAG设置文件创建GlobalSearchTool实例。
- Parameters:
settings_path – GraphRAG设置文件的路径
- Returns:
一个已初始化的GlobalSearchTool实例
- async run(args: GlobalSearchToolArgs, cancellation_token: CancellationToken) GlobalSearchToolReturn [源代码]#
- pydantic model GlobalSearchToolArgs[源代码]#
基础:
BaseModel
显示JSON模式
{ "title": "GlobalSearchToolArgs", "type": "object", "properties": { "query": { "description": "执行全局搜索的用户查询。", "title": "Query", "type": "string" } }, "required": [ "query" ] }
- Fields:
query (str)
- pydantic model GlobalSearchToolReturn[源代码]#
基础:
BaseModel
显示JSON模式
{ "title": "GlobalSearchToolReturn", "type": "object", "properties": { "answer": { "title": "Answer", "type": "string" } }, "required": [ "answer" ] }
- Fields:
answer (str)
- pydantic model LocalContextConfig[源代码]#
基础:
ContextConfig
Show JSON schema
{ "title": "LocalContextConfig", "type": "object", "properties": { "max_data_tokens": { "default": 8000, "title": "Max Data Tokens", "type": "integer" }, "text_unit_prop": { "default": 0.5, "title": "Text Unit Prop", "type": "number" }, "community_prop": { "default": 0.25, "title": "Community Prop", "type": "number" }, "include_entity_rank": { "default": true, "title": "Include Entity Rank", "type": "boolean" }, "rank_description": { "default": "number of relationships", "title": "Rank Description", "type": "string" }, "include_relationship_weight": { "default": true, "title": "Include Relationship Weight", "type": "boolean" }, "relationship_ranking_attribute": { "default": "rank", "title": "Relationship Ranking Attribute", "type": "string" } } }
- Fields:
community_prop (float)
include_entity_rank (bool)
include_relationship_weight (bool)
rank_description (str)
relationship_ranking_attribute (str)
text_unit_prop (float)
- pydantic model LocalDataConfig[源代码]#
基类:
DataConfig
Show JSON schema
{ "title": "LocalDataConfig", "type": "object", "properties": { "input_dir": { "title": "Input Dir", "type": "string" }, "entity_table": { "default": "create_final_nodes", "title": "Entity Table", "type": "string" }, "entity_embedding_table": { "default": "create_final_entities", "title": "Entity Embedding Table", "type": "string" }, "community_level": { "default": 2, "title": "Community Level", "type": "integer" }, "relationship_table": { "default": "create_final_relationships", "title": "Relationship Table", "type": "string" }, "text_unit_table": { "default": "create_final_text_units", "title": "Text Unit Table", "type": "string" } }, "required": [ "input_dir" ] }
- Fields:
relationship_table (str)
text_unit_table (str)
- class LocalSearchTool(token_encoder: Encoding, llm: BaseLLM, embedder: BaseTextEmbedding, data_config: LocalDataConfig, context_config: LocalContextConfig = _default_context_config, search_config: SearchConfig = _default_search_config)[源代码]#
基类:
BaseTool
[LocalSearchToolArgs
,LocalSearchToolReturn
]使能够将GraphRAG本地搜索查询作为AutoGen工具运行。
该工具允许您使用GraphRAG框架在文档语料库上执行语义搜索。搜索结合了本地文档上下文和语义嵌入,以找到相关信息。
注意
该工具需要安装
graphrag
扩展,这是autogen-ext
包的一部分。 安装方法如下:pip install -U "autogen-agentchat" "autogen-ext[graphrag]"
在使用此工具之前,您必须完成GraphRAG的安装和索引过程:
按照GraphRAG文档初始化您的项目和设置
为特定用例配置和调整您的提示
运行索引过程以生成所需的数据文件
确保您拥有来自设置过程的settings.yaml文件
请参考 [GraphRAG 文档](https://microsoft.github.io/graphrag/) 获取完成这些先决步骤的详细说明。
使用 AssistantAgent 的示例:
import asyncio from autogen_ext.models.openai import OpenAIChatCompletionClient from autogen_agentchat.ui import Console from autogen_ext.tools.graphrag import LocalSearchTool from autogen_agentchat.agents import AssistantAgent async def main(): # Initialize the OpenAI client openai_client = OpenAIChatCompletionClient( model="gpt-4o-mini", api_key="<api-key>", ) # Set up local search tool local_tool = LocalSearchTool.from_settings(settings_path="./settings.yaml") # Create assistant agent with the local search tool assistant_agent = AssistantAgent( name="search_assistant", tools=[local_tool], model_client=openai_client, system_message=( "You are a tool selector AI assistant using the GraphRAG framework. " "Your primary task is to determine the appropriate search tool to call based on the user's query. " "For specific, detailed information about particular entities or relationships, call the 'local_search' function." ), ) # Run a sample query query = "What does the station-master say about Dr. Becher?" await Console(assistant_agent.run_stream(task=query)) if __name__ == "__main__": asyncio.run(main())
- Parameters:
token_encoder (tiktoken.Encoding) – 用于文本编码的分词器
llm (BaseLLM) – 用于搜索的语言模型
embedder (BaseTextEmbedding) – 要使用的文本嵌入模型
data_config (DataConfig) – 数据源位置和设置的配置
context_config (LocalContextConfig, optional) – 上下文构建的配置。默认为默认配置。
search_config (SearchConfig, optional) – 搜索操作的配置。默认为默认配置。
- classmethod from_settings(settings_path: str | 路径) LocalSearchTool [源代码]#
从GraphRAG设置文件创建一个LocalSearchTool实例。
- Parameters:
settings_path – GraphRAG设置文件的路径
- Returns:
一个初始化过的LocalSearchTool实例
- async run(args: LocalSearchToolArgs, cancellation_token: CancellationToken) LocalSearchToolReturn [源代码]#
- pydantic model LocalSearchToolArgs[源代码]#
基础:
BaseModel
显示 JSON 架构
{ "title": "LocalSearchToolArgs", "type": "object", "properties": { "query": { "description": "用于执行本地搜索的用户查询。", "title": "Query", "type": "string" } }, "required": [ "query" ] }
- Fields:
query (str)
- pydantic model LocalSearchToolReturn[源代码]#
基础:
BaseModel
显示JSON架构
{ "title": "LocalSearchToolReturn", "type": "object", "properties": { "answer": { "description": "用户查询的答案。", "title": "Answer", "type": "string" } }, "required": [ "answer" ] }
- Fields:
answer (str)
- pydantic model MapReduceConfig[源代码]#
基础:
BaseModel
Show JSON schema
{ "title": "MapReduceConfig", "type": "object", "properties": { "map_max_tokens": { "default": 1000, "title": "Map Max Tokens", "type": "integer" }, "map_temperature": { "default": 0.0, "title": "Map Temperature", "type": "number" }, "reduce_max_tokens": { "default": 2000, "title": "Reduce Max Tokens", "type": "integer" }, "reduce_temperature": { "default": 0.0, "title": "Reduce Temperature", "type": "number" }, "allow_general_knowledge": { "default": false, "title": "Allow General Knowledge", "type": "boolean" }, "json_mode": { "default": false, "title": "Json Mode", "type": "boolean" }, "response_type": { "default": "multiple paragraphs", "title": "Response Type", "type": "string" } } }
- Fields:
allow_general_knowledge (bool)
json_mode (bool)
map_max_tokens (int)
map_temperature (float)
reduce_max_tokens (int)
reduce_temperature (float)
response_type (str)
- pydantic model SearchConfig[源代码]#
基础:
BaseModel
显示JSON模式
{ "title": "SearchConfig", "type": "object", "properties": { "max_tokens": { "default": 1500, "title": "Max Tokens", "type": "integer" }, "temperature": { "default": 0.0, "title": "Temperature", "type": "number" }, "response_type": { "default": "multiple paragraphs", "title": "Response Type", "type": "string" } } }
- Fields:
max_tokens (int)
response_type (str)
temperature (float)