6.1. CUDA驱动程序使用的数据类型

struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
union 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
struct 
union 
struct 

定义

#define CUDA_ARRAY3D_2DARRAY 0x01
#define CUDA_ARRAY3D_COLOR_ATTACHMENT 0x20
#define CUDA_ARRAY3D_CUBEMAP 0x04
#define CUDA_ARRAY3D_DEFERRED_MAPPING 0x80
#define CUDA_ARRAY3D_DEPTH_TEXTURE 0x10
#define CUDA_ARRAY3D_LAYERED 0x01
#define CUDA_ARRAY3D_SPARSE 0x40
#define CUDA_ARRAY3D_SURFACE_LDST 0x02
#define CUDA_ARRAY3D_TEXTURE_GATHER 0x08
#define CUDA_ARRAY3D_VIDEO_ENCODE_DECODE 0x100
#define CUDA_COOPERATIVE_LAUNCH_MULTI_DEVICE_NO_POST_LAUNCH_SYNC 0x02
#define CUDA_COOPERATIVE_LAUNCH_MULTI_DEVICE_NO_PRE_LAUNCH_SYNC 0x01
#define CUDA_EGL_INFINITE_TIMEOUT 0xFFFFFFFF
#define CUDA_EXTERNAL_MEMORY_DEDICATED 0x1
#define CUDA_EXTERNAL_SEMAPHORE_SIGNAL_SKIP_NVSCIBUF_MEMSYNC 0x01
#define CUDA_EXTERNAL_SEMAPHORE_WAIT_SKIP_NVSCIBUF_MEMSYNC 0x02
#define CUDA_NVSCISYNC_ATTR_SIGNAL 0x1
#define CUDA_NVSCISYNC_ATTR_WAIT 0x2
#define CUDA_VERSION 12080
#define CU_ARRAY_SPARSE_PROPERTIES_SINGLE_MIPTAIL 0x1
#define CU_DEVICE_CPU ((CUdevice)-1)
#define CU_DEVICE_INVALID ((CUdevice)-2)
#define CU_GRAPH_COND_ASSIGN_DEFAULT 0x1
#define CU_GRAPH_KERNEL_NODE_PORT_DEFAULT 0
#define CU_GRAPH_KERNEL_NODE_PORT_LAUNCH_ORDER 2
#define CU_GRAPH_KERNEL_NODE_PORT_PROGRAMMATIC 1
#define CU_IPC_HANDLE_SIZE 64
#define CU_LAUNCH_PARAM_BUFFER_POINTER
#define CU_LAUNCH_PARAM_BUFFER_POINTER_AS_INT 0x01
#define CU_LAUNCH_PARAM_BUFFER_SIZE
#define CU_LAUNCH_PARAM_BUFFER_SIZE_AS_INT 0x02
#define CU_LAUNCH_PARAM_END
#define CU_LAUNCH_PARAM_END_AS_INT 0x00
#define CU_MEMHOSTALLOC_DEVICEMAP 0x02
#define CU_MEMHOSTALLOC_PORTABLE 0x01
#define CU_MEMHOSTALLOC_WRITECOMBINED 0x04
#define CU_MEMHOSTREGISTER_DEVICEMAP 0x02
#define CU_MEMHOSTREGISTER_IOMEMORY 0x04
#define CU_MEMHOSTREGISTER_PORTABLE 0x01
#define CU_MEMHOSTREGISTER_READ_ONLY 0x08
#define CU_MEM_CREATE_USAGE_HW_DECOMPRESS 0x2
#define CU_MEM_CREATE_USAGE_TILE_POOL 0x1
#define CU_MEM_POOL_CREATE_USAGE_HW_DECOMPRESS 0x2
#define CU_PARAM_TR_DEFAULT -1
#define CU_STREAM_LEGACY ((CUstream)0x1)
#define CU_STREAM_PER_THREAD ((CUstream)0x2)
#define CU_TENSOR_MAP_NUM_QWORDS 16
#define CU_TRSA_OVERRIDE_FORMAT 0x01
#define CU_TRSF_DISABLE_TRILINEAR_OPTIMIZATION 0x20
#define CU_TRSF_NORMALIZED_COORDINATES 0x02
#define CU_TRSF_READ_AS_INTEGER 0x01
#define CU_TRSF_SEAMLESS_CUBEMAP 0x40
#define CU_TRSF_SRGB 0x10
#define MAX_PLANES 3

类型定义

typedef struct CUaccessPolicyWindow_v1 CUaccessPolicyWindow
typedef CUarray_st *  CUarray
typedef void  ( *CUasyncCallback )( CUasyncNotificationInfo*  info, void*  userData,  CUasyncCallbackHandle callback )
typedef CUasyncCallbackEntry_st *  CUasyncCallbackHandle
typedef CUctx_st *  CUcontext
typedef CUdevice_v1 CUdevice
typedef int  CUdevice_v1
typedef CUdeviceptr_v2 CUdeviceptr
typedef unsigned int  CUdeviceptr_v2
typedef CUeglStreamConnection_st *  CUeglStreamConnection
typedef CUevent_st *  CUevent
typedef struct CUexecAffinityParam_v1 CUexecAffinityParam
typedef CUextMemory_st *  CUexternalMemory
typedef CUextSemaphore_st *  CUexternalSemaphore
typedef CUfunc_st *  CUfunction
typedef CUgraph_st *  CUgraph
typedef cuuint64_t  CUgraphConditionalHandle
typedef CUgraphDeviceUpdatableNode_st *  CUgraphDeviceNode
typedef CUgraphExec_st *  CUgraphExec
typedef CUgraphNode_st *  CUgraphNode
typedef CUgraphicsResource_st *  CUgraphicsResource
typedef CUgreenCtx_st *  CUgreenCtx
typedef void(CUDA_CB*  CUhostFn )( void*  userData )
typedef CUkern_st *  CUkernel
typedef CUlib_st *  CUlibrary
typedef CUmemPoolHandle_st *  CUmemoryPool
typedef CUmipmappedArray_st *  CUmipmappedArray
typedef CUmod_st *  CUmodule
typedef size_t(CUDA_CB*  CUoccupancyB2DSize )( int  blockSize )
typedef CUstream_st *  CUstream
typedef void(CUDA_CB*  CUstreamCallback )( CUstream hStream,  CUresult status, void*  userData )
typedef CUsurfObject_v1 CUsurfObject
typedef unsigned long long  CUsurfObject_v1
typedef CUsurfref_st *  CUsurfref
typedef CUtexObject_v1 CUtexObject
typedef unsigned long long  CUtexObject_v1
typedef CUtexref_st *  CUtexref
typedef CUuserObject_st *  CUuserObject

枚举

enum CUDA_POINTER_ATTRIBUTE_ACCESS_FLAGS
enum CUGPUDirectRDMAWritesOrdering
enum CUaccessProperty
enum CUaddress_mode
enum CUarraySparseSubresourceType
enum CUarray_cubemap_face
enum CUarray_format
enum CUasyncNotificationType
enum CUclusterSchedulingPolicy
enum CUcomputemode
enum CUctx_flags
enum CUdeviceNumaConfig
enum CUdevice_P2PAttribute
enum CUdevice_attribute
enum CUdriverProcAddressQueryResult
enum CUdriverProcAddress_flags
enum CUeglColorFormat
enum CUeglFrameType
enum CUeglResourceLocationFlags
enum CUevent_flags
enum CUevent_record_flags
enum CUevent_sched_flags
enum CUevent_wait_flags
enum CUexecAffinityType
enum CUexternalMemoryHandleType
enum CUexternalSemaphoreHandleType
enum CUfilter_mode
enum CUflushGPUDirectRDMAWritesOptions
enum CUflushGPUDirectRDMAWritesScope
enum CUflushGPUDirectRDMAWritesTarget
enum CUfunc_cache
enum CUfunction_attribute
enum CUgraphConditionalNodeType
enum CUgraphDebugDot_flags
enum CUgraphDependencyType
enum CUgraphExecUpdateResult
enum CUgraphInstantiateResult
enum CUgraphInstantiate_flags
enum CUgraphNodeType
enum CUgraphicsMapResourceFlags
enum CUgraphicsRegisterFlags
enum CUipcMem_flags
enum CUjitInputType
enum CUjit_cacheMode
enum CUjit_fallback
enum CUjit_option
enum CUjit_target
enum CUlaunchAttributeID
enum CUlaunchMemSyncDomain
enum CUlibraryOption
enum CUlimit
enum CUmemAccess_flags
enum CUmemAllocationCompType
enum CUmemAllocationGranularity_flags
enum CUmemAllocationHandleType
enum CUmemAllocationType
enum CUmemAttach_flags
enum CUmemHandleType
enum CUmemLocationType
enum CUmemOperationType
enum CUmemPool_attribute
enum CUmemRangeFlags
enum CUmemRangeHandleType
enum CUmem_advise
enum CUmemcpy3DOperandType
enum CUmemcpyFlags
enum CUmemcpySrcAccessOrder
enum CUmemorytype
enum CUmulticastGranularity_flags
enum CUoccupancy_flags
enum CUpointer_attribute
enum CUprocessState
enum CUresourceViewFormat
enum CUresourcetype
enum CUresult
enum CUshared_carveout
enum CUsharedconfig
enum CUstreamBatchMemOpType
enum CUstreamCaptureMode
enum CUstreamCaptureStatus
enum CUstreamMemoryBarrier_flags
enum CUstreamUpdateCaptureDependencies_flags
enum CUstreamWaitValue_flags
enum CUstreamWriteValue_flags
enum CUstream_flags
enum CUtensorMapDataType
enum CUtensorMapFloatOOBfill
enum CUtensorMapIm2ColWideMode
enum CUtensorMapInterleave
enum CUtensorMapL2promotion
enum CUtensorMapSwizzle
enum CUuserObjectRetain_flags
enum CUuserObject_flags
enum cl_context_flags
enum cl_event_flags

定义

#define CUDA_ARRAY3D_2DARRAY 0x01

已弃用,请使用 CUDA_ARRAY3D_LAYERED

#define CUDA_ARRAY3D_COLOR_ATTACHMENT 0x20

此标志表示CUDA数组可以作为颜色目标绑定到外部图形API中

#define CUDA_ARRAY3D_CUBEMAP 0x04

如果设置此项,CUDA数组将包含六个二维数组,表示立方体的各个面。此类CUDA数组的宽度必须等于高度,且深度必须为六。若同时设置了CUDA_ARRAY3D_LAYERED标志,则该CUDA数组为立方体贴图集合,其深度必须是六的倍数。

#define CUDA_ARRAY3D_DEFERRED_MAPPING 0x80

如果设置了此标志,表示CUDA数组或CUDA多级映射数组将允许延迟内存映射

#define CUDA_ARRAY3D_DEPTH_TEXTURE 0x10

如果设置了此标志,表示CUDA数组是一个深度纹理(DEPTH_TEXTURE)。

#define CUDA_ARRAY3D_LAYERED 0x01

如果设置此项,CUDA数组将是一个层的集合,其中每个层可以是1D或2D数组,此时CUDA_ARRAY3D_DESCRIPTOR中的Depth成员表示的是层数,而非3D数组的深度。

#define CUDA_ARRAY3D_SPARSE 0x40

如果设置了此标志,表示CUDA数组或CUDA mipmapped数组分别是稀疏CUDA数组或CUDA mipmapped数组

#define CUDA_ARRAY3D_SURFACE_LDST 0x02

必须设置此标志才能将表面引用绑定到CUDA数组

#define CUDA_ARRAY3D_TEXTURE_GATHER 0x08

必须设置此标志才能在CUDA数组上执行纹理收集操作。

#define CUDA_ARRAY3D_VIDEO_ENCODE_DECODE 0x100

此标志表示CUDA数组将用于硬件加速的视频编码/解码操作。

#define CUDA_COOPERATIVE_LAUNCH_MULTI_DEVICE_NO_POST_LAUNCH_SYNC 0x02

如果设置此选项,任何后续推送到参与调用cuLaunchCooperativeKernelMultiDevice的流中的工作,将仅等待对应GPU上启动的内核完成后才开始执行。

#define CUDA_COOPERATIVE_LAUNCH_MULTI_DEVICE_NO_PRE_LAUNCH_SYNC 0x01

如果设置此选项,作为cuLaunchCooperativeKernelMultiDevice一部分启动的每个内核,仅等待对应GPU流中的先前工作完成后才开始执行。

#define CUDA_EGL_INFINITE_TIMEOUT 0xFFFFFFFF

表示cuEGLStreamConsumerAcquireFrame的超时时间为无限。

#define CUDA_EXTERNAL_MEMORY_DEDICATED 0x1

表示外部内存对象是一个专用资源

#define CUDA_EXTERNAL_SEMAPHORE_SIGNAL_SKIP_NVSCIBUF_MEMSYNC 0x01

当CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS的flags参数包含此标志时,表示对外部信号量对象进行信号通知应跳过对所有导入为CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF的外部内存对象执行适当的内存同步操作,默认情况下会执行这些操作以确保与其他导入相同NvSciBuf内存对象的导入者之间的数据一致性。

#define CUDA_EXTERNAL_SEMAPHORE_WAIT_SKIP_NVSCIBUF_MEMSYNC 0x02

当CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS的flags参数包含此标志时,表示在外部信号量对象上的等待操作应跳过对所有导入为CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF的外部内存对象执行适当的内存同步操作,这些操作默认情况下会执行以确保与同一NvSciBuf内存对象的其他导入者的数据一致性。

#define CUDA_NVSCISYNC_ATTR_SIGNAL 0x1

cuDeviceGetNvSciSyncAttributesflags设置为该值时,表示应用程序需要由cuDeviceGetNvSciSyncAttributes填充信号器特定的NvSciSyncAttr。

#define CUDA_NVSCISYNC_ATTR_WAIT 0x2

cuDeviceGetNvSciSyncAttributesflags设置为该值时,表示应用程序需要由cuDeviceGetNvSciSyncAttributes填充特定的等待者NvSciSyncAttr属性。

#define CUDA_VERSION 12080

CUDA API 版本号

#define CU_ARRAY_SPARSE_PROPERTIES_SINGLE_MIPTAIL 0x1

表示分层稀疏CUDA数组或CUDA mipmapped数组的所有层共享一个mip尾部区域

#define CU_DEVICE_CPU ((CUdevice)-1)

代表CPU的设备

#define CU_DEVICE_INVALID ((CUdevice)-2)

表示无效设备的设备

#define CU_GRAPH_COND_ASSIGN_DEFAULT 0x1

条件节点处理标志的默认值在图形启动时应用。

#define CU_GRAPH_KERNEL_NODE_PORT_DEFAULT 0

当内核完成执行时,该端口将被激活。

#define CU_GRAPH_KERNEL_NODE_PORT_LAUNCH_ORDER 2

当内核的所有块开始执行时,此端口将被激活。另请参阅CU_LAUNCH_ATTRIBUTE_LAUNCH_COMPLETION_EVENT

#define CU_GRAPH_KERNEL_NODE_PORT_PROGRAMMATIC 1

当内核的所有块都执行了cudaTriggerProgrammaticLaunchCompletion()或已终止时,该端口将被激活。它必须与边类型CU_GRAPH_DEPENDENCY_TYPE_PROGRAMMATIC一起使用。另请参阅CU_LAUNCH_ATTRIBUTE_PROGRAMMATIC_EVENT

#define CU_IPC_HANDLE_SIZE 64

CUDA IPC 句柄大小

#define CU_LAUNCH_PARAM_BUFFER_POINTER

指示extra参数中的下一个值将是指向包含用于启动内核f的所有内核参数的缓冲区指针。该缓冲区需要满足各个参数的所有对齐/填充要求。如果在extra数组中没有同时指定CU_LAUNCH_PARAM_BUFFER_SIZE,则CU_LAUNCH_PARAM_BUFFER_POINTER将不会生效。

((void*)CU_LAUNCH_PARAM_BUFFER_POINTER_AS_INT)

#define CU_LAUNCH_PARAM_BUFFER_POINTER_AS_INT 0x01

C++编译时常量,用于CU_LAUNCH_PARAM_BUFFER_POINTER

#define CU_LAUNCH_PARAM_BUFFER_SIZE

指示extra参数中下一个值将是一个指向size_t的指针,该指针包含由CU_LAUNCH_PARAM_BUFFER_POINTER指定的缓冲区大小。如果与CU_LAUNCH_PARAM_BUFFER_SIZE关联的值不为零,则还必须在extra数组中指定CU_LAUNCH_PARAM_BUFFER_POINTER

((void*)CU_LAUNCH_PARAM_BUFFER_SIZE_AS_INT)

#define CU_LAUNCH_PARAM_BUFFER_SIZE_AS_INT 0x02

C++编译时常量,对应CU_LAUNCH_PARAM_BUFFER_SIZE

#define CU_LAUNCH_PARAM_END

cuLaunchKernel函数中extra参数的数组结束终止符

((void*)CU_LAUNCH_PARAM_END_AS_INT)

#define CU_LAUNCH_PARAM_END_AS_INT 0x00

C++编译时常量,用于CU_LAUNCH_PARAM_END

#define CU_MEMHOSTALLOC_DEVICEMAP 0x02

如果设置此标志,主机内存将被映射到CUDA地址空间,并且可以在主机指针上调用cuMemHostGetDevicePointer()。这是cuMemHostAlloc()的标志位。

#define CU_MEMHOSTALLOC_PORTABLE 0x01

如果设置此标志,主机内存可在不同CUDA上下文之间移植。这是cuMemHostAlloc()的标志参数

#define CU_MEMHOSTALLOC_WRITECOMBINED 0x04

如果设置,主机内存将分配为写合并模式 - 写入速度快,DMA传输更快,但读取速度较慢,除非使用SSE4流式加载指令(MOVNTDQA)。这是cuMemHostAlloc()的标志位

#define CU_MEMHOSTREGISTER_DEVICEMAP 0x02

如果设置此标志,主机内存将被映射到CUDA地址空间,并且可以在主机指针上调用cuMemHostGetDevicePointer()。这是cuMemHostRegister()的标志参数。

#define CU_MEMHOSTREGISTER_IOMEMORY 0x04

如果设置此标志,传入的内存指针将被视为指向某些内存映射的I/O空间,例如属于第三方PCIe设备。在Windows系统上该标志无效。在Linux系统上,该内存会被标记为GPU的非缓存一致内存,并且需要是物理连续的。如果以非特权用户身份运行,可能会返回CUDA_ERROR_NOT_PERMITTED;在较旧的Linux内核版本上可能返回CUDA_ERROR_NOT_SUPPORTED。其他所有平台均不支持此功能,将返回CUDA_ERROR_NOT_SUPPORTED。这是cuMemHostRegister()的标志

#define CU_MEMHOSTREGISTER_PORTABLE 0x01

如果设置此标志,主机内存可在不同CUDA上下文之间移植。这是cuMemHostRegister()的标志参数

#define CU_MEMHOSTREGISTER_READ_ONLY 0x08

如果设置此参数,传入的内存指针将被视为指向设备只读内存。在不支持CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS_USES_HOST_PAGE_TABLES的平台上,该标志是注册CPU映射内存为只读所必需的。可以通过设备属性CU_DEVICE_ATTRIBUTE_READ_ONLY_HOST_REGISTER_SUPPORTED查询是否支持使用此标志。在当前上下文关联的设备未设置此属性的情况下使用该标志,将导致cuMemHostRegister返回CUDA_ERROR_NOT_SUPPORTED错误。

#define CU_MEM_CREATE_USAGE_HW_DECOMPRESS 0x2

如果设置了此标志,表示该内存将用作硬件加速解压缩的缓冲区。

#define CU_MEM_CREATE_USAGE_TILE_POOL 0x1

如果设置了此标志,表示该内存将用作图块池。

#define CU_MEM_POOL_CREATE_USAGE_HW_DECOMPRESS 0x2

如果设置了此标志,表示该内存将用作硬件加速解压缩的缓冲区。

#define CU_PARAM_TR_DEFAULT -1

对于加载到模块中的纹理引用,使用纹理引用中的默认纹理单元。

#define CU_STREAM_LEGACY ((CUstream)0x1)

遗留流句柄

可以将此流句柄作为CUstream传递,以使用具有传统同步行为的隐式流。

查看同步行为的详细信息。

#define CU_STREAM_PER_THREAD ((CUstream)0x2)

每线程流句柄

可以将此流句柄作为CUstream传递,以使用具有每线程同步行为的隐式流。

查看同步行为的详细信息。

#define CU_TENSOR_MAP_NUM_QWORDS 16

张量映射描述符的大小

#define CU_TRSA_OVERRIDE_FORMAT 0x01

根据数组推断的格式覆盖texref格式。用于cuTexRefSetArray()的标志

#define CU_TRSF_DISABLE_TRILINEAR_OPTIMIZATION 0x20

禁用任何三线性过滤优化。用于cuTexRefSetFlags()cuTexObjectCreate()的标志

#define CU_TRSF_NORMALIZED_COORDINATES 0x02

使用[0,1)范围内的归一化纹理坐标,而非[0,dim)范围。这是cuTexRefSetFlags()cuTexObjectCreate()的标志参数

#define CU_TRSF_READ_AS_INTEGER 0x01

将纹理读取为整数,而不是将值提升到[0,1]范围内的浮点数。这是cuTexRefSetFlags()cuTexObjectCreate()的标志参数

#define CU_TRSF_SEAMLESS_CUBEMAP 0x40

启用无缝立方体贴图过滤。cuTexObjectCreate()的标志位

#define CU_TRSF_SRGB 0x10

在纹理读取时执行sRGB到线性的转换。这是cuTexRefSetFlags()cuTexObjectCreate()的标志参数

#define MAX_PLANES 3

每帧最大平面数

类型定义

typedef struct CUaccessPolicyWindow_v1 CUaccessPolicyWindow

访问策略窗口

typedef CUarray_st * CUarray

CUDA数组

void ( *CUasyncCallback )( CUasyncNotificationInfo*  info, void*  userData,  CUasyncCallbackHandle callback )

CUDA 异步通知回调

参数
info
Information describing what actions to take as a result of this trim notification.
userData
Pointer to user defined data provided at registration.
CUasyncCallbackHandle callback
typedef CUasyncCallbackEntry_st * CUasyncCallbackHandle

CUDA异步通知回调句柄

typedef CUctx_st * CUcontext

一个常规的上下文句柄

typedef CUdevice_v1 CUdevice

CUDA设备

typedef int CUdevice_v1

CUDA设备

typedef CUdeviceptr_v2 CUdeviceptr

CUDA设备指针

typedef unsigned int CUdeviceptr_v2

CUDA设备指针CUdeviceptr被定义为一种无符号整数类型,其大小与目标平台上指针的大小相匹配。

typedef CUeglStreamConnection_st * CUeglStreamConnection

CUDA EGL流连接

typedef CUevent_st * CUevent

CUDA事件

typedef struct CUexecAffinityParam_v1 CUexecAffinityParam

执行亲和性参数

typedef CUextMemory_st * CUexternalMemory

CUDA 外部内存

typedef CUextSemaphore_st * CUexternalSemaphore

CUDA外部信号量

typedef CUfunc_st * CUfunction

CUDA 函数

typedef CUgraph_st * CUgraph

CUDA图

typedef cuuint64_t CUgraphConditionalHandle

CUDA 图条件句柄

typedef CUgraphDeviceUpdatableNode_st * CUgraphDeviceNode

CUDA 图形设备节点句柄

typedef CUgraphExec_st * CUgraphExec

CUDA可执行图

typedef CUgraphNode_st * CUgraphNode

CUDA 图节点

typedef CUgraphicsResource_st * CUgraphicsResource

CUDA图形互操作资源

typedef CUgreenCtx_st * CUgreenCtx

一个绿色的上下文句柄。该句柄每次只能安全地在一个CPU线程中使用。通过cuGreenCtxCreate创建

void(CUDA_CB* CUhostFn )( void*  userData )

CUDA 主机函数

参数
userData
Argument value passed to the function
typedef CUkern_st * CUkernel

CUDA内核

typedef CUlib_st * CUlibrary

CUDA库

typedef CUmemPoolHandle_st * CUmemoryPool

CUDA 内存池

typedef CUmipmappedArray_st * CUmipmappedArray

CUDA 多级渐远纹理数组

typedef CUmod_st * CUmodule

CUDA模块

size_t(CUDA_CB* CUoccupancyB2DSize )( int  blockSize )

针对特定内核的块大小到每块动态共享内存的映射

参数
blockSize
Block size of the kernel.
返回

一个块所需的动态共享内存。

typedef CUstream_st * CUstream

CUDA流

void(CUDA_CB* CUstreamCallback )( CUstream hStream,  CUresult status, void*  userData )

CUDA流回调

参数
hStream
The stream the callback was added to, as passed to cuStreamAddCallback. May be NULL.
CUresult status
userData
User parameter provided at registration.
typedef CUsurfObject_v1 CUsurfObject

一个表示CUDA表面对象的不透明值

typedef unsigned long long CUsurfObject_v1

表示CUDA表面对象的不透明值

typedef CUsurfref_st * CUsurfref

CUDA表面引用

typedef CUtexObject_v1 CUtexObject

一个表示CUDA纹理对象的不透明值

typedef unsigned long long CUtexObject_v1

一个表示CUDA纹理对象的不透明值

typedef CUtexref_st * CUtexref

CUDA纹理引用

typedef CUuserObject_st * CUuserObject

用于图的CUDA用户对象

枚举

enum CUDA_POINTER_ATTRIBUTE_ACCESS_FLAGS

访问标志,用于指定当前上下文设备对所引用内存的访问级别。

数值
CU_POINTER_ATTRIBUTE_ACCESS_FLAG_NONE = 0x0
No access, meaning the device cannot access this memory at all, thus must be staged through accessible memory in order to complete certain operations
CU_POINTER_ATTRIBUTE_ACCESS_FLAG_READ = 0x1
Read-only access, meaning writes to this memory are considered invalid accesses and thus return error in that case.
CU_POINTER_ATTRIBUTE_ACCESS_FLAG_READWRITE = 0x3
Read-write access, the device has full read-write access to the memory
enum CUGPUDirectRDMAWritesOrdering

GPUDirect RDMA写入的平台原生排序

数值
CU_GPU_DIRECT_RDMA_WRITES_ORDERING_NONE = 0
The device does not natively support ordering of remote writes. cuFlushGPUDirectRDMAWrites() can be leveraged if supported.
CU_GPU_DIRECT_RDMA_WRITES_ORDERING_OWNER = 100
Natively, the device can consistently consume remote writes, although other CUDA devices may not.
CU_GPU_DIRECT_RDMA_WRITES_ORDERING_ALL_DEVICES = 200
Any CUDA device in the system can consistently consume remote writes to this device.
enum CUaccessProperty

为hitProp和missProp成员指定带有CUaccessPolicyWindow的性能提示。

数值
CU_ACCESS_PROPERTY_NORMAL = 0
Normal cache persistence.
CU_ACCESS_PROPERTY_STREAMING = 1
Streaming access is less likely to persit from cache.
CU_ACCESS_PROPERTY_PERSISTING = 2
Persisting access is more likely to persist in cache.
enum CUaddress_mode

纹理引用寻址模式

数值
CU_TR_ADDRESS_MODE_WRAP = 0
Wrapping address mode
CU_TR_ADDRESS_MODE_CLAMP = 1
Clamp to edge address mode
CU_TR_ADDRESS_MODE_MIRROR = 2
Mirror address mode
CU_TR_ADDRESS_MODE_BORDER = 3
Border address mode
enum CUarraySparseSubresourceType

稀疏子资源类型

数值
CU_ARRAY_SPARSE_SUBRESOURCE_TYPE_SPARSE_LEVEL = 0
CU_ARRAY_SPARSE_SUBRESOURCE_TYPE_MIPTAIL = 1
enum CUarray_cubemap_face

立方体面的数组索引

数值
CU_CUBEMAP_FACE_POSITIVE_X = 0x00
Positive X face of cubemap
CU_CUBEMAP_FACE_NEGATIVE_X = 0x01
Negative X face of cubemap
CU_CUBEMAP_FACE_POSITIVE_Y = 0x02
Positive Y face of cubemap
CU_CUBEMAP_FACE_NEGATIVE_Y = 0x03
Negative Y face of cubemap
CU_CUBEMAP_FACE_POSITIVE_Z = 0x04
Positive Z face of cubemap
CU_CUBEMAP_FACE_NEGATIVE_Z = 0x05
Negative Z face of cubemap
enum CUarray_format

数组格式

数值
CU_AD_FORMAT_UNSIGNED_INT8 = 0x01
Unsigned 8-bit integers
CU_AD_FORMAT_UNSIGNED_INT16 = 0x02
Unsigned 16-bit integers
CU_AD_FORMAT_UNSIGNED_INT32 = 0x03
Unsigned 32-bit integers
CU_AD_FORMAT_SIGNED_INT8 = 0x08
Signed 8-bit integers
CU_AD_FORMAT_SIGNED_INT16 = 0x09
Signed 16-bit integers
CU_AD_FORMAT_SIGNED_INT32 = 0x0a
Signed 32-bit integers
CU_AD_FORMAT_HALF = 0x10
16-bit floating point
CU_AD_FORMAT_FLOAT = 0x20
32-bit floating point
CU_AD_FORMAT_NV12 = 0xb0
8-bit YUV planar format, with 4:2:0 sampling
CU_AD_FORMAT_UNORM_INT8X1 = 0xc0
1 channel unsigned 8-bit normalized integer
CU_AD_FORMAT_UNORM_INT8X2 = 0xc1
2 channel unsigned 8-bit normalized integer
CU_AD_FORMAT_UNORM_INT8X4 = 0xc2
4 channel unsigned 8-bit normalized integer
CU_AD_FORMAT_UNORM_INT16X1 = 0xc3
1 channel unsigned 16-bit normalized integer
CU_AD_FORMAT_UNORM_INT16X2 = 0xc4
2 channel unsigned 16-bit normalized integer
CU_AD_FORMAT_UNORM_INT16X4 = 0xc5
4 channel unsigned 16-bit normalized integer
CU_AD_FORMAT_SNORM_INT8X1 = 0xc6
1 channel signed 8-bit normalized integer
CU_AD_FORMAT_SNORM_INT8X2 = 0xc7
2 channel signed 8-bit normalized integer
CU_AD_FORMAT_SNORM_INT8X4 = 0xc8
4 channel signed 8-bit normalized integer
CU_AD_FORMAT_SNORM_INT16X1 = 0xc9
1 channel signed 16-bit normalized integer
CU_AD_FORMAT_SNORM_INT16X2 = 0xca
2 channel signed 16-bit normalized integer
CU_AD_FORMAT_SNORM_INT16X4 = 0xcb
4 channel signed 16-bit normalized integer
CU_AD_FORMAT_BC1_UNORM = 0x91
4 channel unsigned normalized block-compressed (BC1 compression) format
CU_AD_FORMAT_BC1_UNORM_SRGB = 0x92
4 channel unsigned normalized block-compressed (BC1 compression) format with sRGB encoding
CU_AD_FORMAT_BC2_UNORM = 0x93
4 channel unsigned normalized block-compressed (BC2 compression) format
CU_AD_FORMAT_BC2_UNORM_SRGB = 0x94
4 channel unsigned normalized block-compressed (BC2 compression) format with sRGB encoding
CU_AD_FORMAT_BC3_UNORM = 0x95
4 channel unsigned normalized block-compressed (BC3 compression) format
CU_AD_FORMAT_BC3_UNORM_SRGB = 0x96
4 channel unsigned normalized block-compressed (BC3 compression) format with sRGB encoding
CU_AD_FORMAT_BC4_UNORM = 0x97
1 channel unsigned normalized block-compressed (BC4 compression) format
CU_AD_FORMAT_BC4_SNORM = 0x98
1 channel signed normalized block-compressed (BC4 compression) format
CU_AD_FORMAT_BC5_UNORM = 0x99
2 channel unsigned normalized block-compressed (BC5 compression) format
CU_AD_FORMAT_BC5_SNORM = 0x9a
2 channel signed normalized block-compressed (BC5 compression) format
CU_AD_FORMAT_BC6H_UF16 = 0x9b
3 channel unsigned half-float block-compressed (BC6H compression) format
CU_AD_FORMAT_BC6H_SF16 = 0x9c
3 channel signed half-float block-compressed (BC6H compression) format
CU_AD_FORMAT_BC7_UNORM = 0x9d
4 channel unsigned normalized block-compressed (BC7 compression) format
CU_AD_FORMAT_BC7_UNORM_SRGB = 0x9e
4 channel unsigned normalized block-compressed (BC7 compression) format with sRGB encoding
CU_AD_FORMAT_P010 = 0x9f
10-bit YUV planar format, with 4:2:0 sampling
CU_AD_FORMAT_P016 = 0xa1
16-bit YUV planar format, with 4:2:0 sampling
CU_AD_FORMAT_NV16 = 0xa2
8-bit YUV planar format, with 4:2:2 sampling
CU_AD_FORMAT_P210 = 0xa3
10-bit YUV planar format, with 4:2:2 sampling
CU_AD_FORMAT_P216 = 0xa4
16-bit YUV planar format, with 4:2:2 sampling
CU_AD_FORMAT_YUY2 = 0xa5
2 channel, 8-bit YUV packed planar format, with 4:2:2 sampling
CU_AD_FORMAT_Y210 = 0xa6
2 channel, 10-bit YUV packed planar format, with 4:2:2 sampling
CU_AD_FORMAT_Y216 = 0xa7
2 channel, 16-bit YUV packed planar format, with 4:2:2 sampling
CU_AD_FORMAT_AYUV = 0xa8
4 channel, 8-bit YUV packed planar format, with 4:4:4 sampling
CU_AD_FORMAT_Y410 = 0xa9
10-bit YUV packed planar format, with 4:4:4 sampling
CU_AD_FORMAT_Y416 = 0xb1
4 channel, 12-bit YUV packed planar format, with 4:4:4 sampling
CU_AD_FORMAT_Y444_PLANAR8 = 0xb2
3 channel 8-bit YUV planar format, with 4:4:4 sampling
CU_AD_FORMAT_Y444_PLANAR10 = 0xb3
3 channel 10-bit YUV planar format, with 4:4:4 sampling
CU_AD_FORMAT_YUV444_8bit_SemiPlanar = 0xb4
3 channel 8-bit YUV semi-planar format, with 4:4:4 sampling
CU_AD_FORMAT_YUV444_16bit_SemiPlanar = 0xb5
3 channel 16-bit YUV semi-planar format, with 4:4:4 sampling
CU_AD_FORMAT_UNORM_INT_101010_2 = 0x50
4 channel unorm R10G10B10A2 RGB format
CU_AD_FORMAT_MAX = 0x7FFFFFFF
enum CUasyncNotificationType

可以发送的异步通知类型

数值
CU_ASYNC_NOTIFICATION_TYPE_OVER_BUDGET = 0x1
enum CUclusterSchedulingPolicy

集群调度策略。这些可以传递给 cuFuncSetAttributecuKernelSetAttribute

数值
CU_CLUSTER_SCHEDULING_POLICY_DEFAULT = 0
the default policy
CU_CLUSTER_SCHEDULING_POLICY_SPREAD = 1
spread the blocks within a cluster to the SMs
CU_CLUSTER_SCHEDULING_POLICY_LOAD_BALANCING = 2
allow the hardware to load-balance the blocks in a cluster to the SMs
enum CUcomputemode

计算模式

数值
CU_COMPUTEMODE_DEFAULT = 0
Default compute mode (Multiple contexts allowed per device)
CU_COMPUTEMODE_PROHIBITED = 2
Compute-prohibited mode (No contexts can be created on this device at this time)
CU_COMPUTEMODE_EXCLUSIVE_PROCESS = 3
Compute-exclusive-process mode (Only one context used by a single process can be present on this device at a time)
enum CUctx_flags

上下文创建标志

数值
CU_CTX_SCHED_AUTO = 0x00
Automatic scheduling
CU_CTX_SCHED_SPIN = 0x01
Set spin as default scheduling
CU_CTX_SCHED_YIELD = 0x02
Set yield as default scheduling
CU_CTX_SCHED_BLOCKING_SYNC = 0x04
Set blocking synchronization as default scheduling
CU_CTX_BLOCKING_SYNC = 0x04
已弃用

该标志自CUDA 4.0起已弃用,并被替换为CU_CTX_SCHED_BLOCKING_SYNC

将阻塞同步设置为默认调度方式

CU_CTX_SCHED_MASK = 0x07
CU_CTX_MAP_HOST = 0x08
已弃用

该标志自CUDA 11.0起已被弃用,不再产生任何效果。自CUDA 3.2起,所有上下文的行为都如同该标志已启用。

CU_CTX_LMEM_RESIZE_TO_MAX = 0x10
Keep local memory allocation after launch
CU_CTX_COREDUMP_ENABLE = 0x20
Trigger coredumps from exceptions in this context
CU_CTX_USER_COREDUMP_ENABLE = 0x40
Enable user pipe to trigger coredumps in this context
CU_CTX_SYNC_MEMOPS = 0x80
Ensure synchronous memory operations on this context will synchronize
CU_CTX_FLAGS_MASK = 0xFF
enum CUdeviceNumaConfig

CUDA设备NUMA配置

数值
CU_DEVICE_NUMA_CONFIG_NONE = 0
The GPU is not a NUMA node
CU_DEVICE_NUMA_CONFIG_NUMA_NODE
The GPU is a NUMA node, CU_DEVICE_ATTRIBUTE_NUMA_ID contains its NUMA ID
enum CUdevice_P2PAttribute

P2P属性

数值
CU_DEVICE_P2P_ATTRIBUTE_PERFORMANCE_RANK = 0x01
A relative value indicating the performance of the link between two devices
CU_DEVICE_P2P_ATTRIBUTE_ACCESS_SUPPORTED = 0x02
P2P Access is enable
CU_DEVICE_P2P_ATTRIBUTE_NATIVE_ATOMIC_SUPPORTED = 0x03
Atomic operation over the link supported
CU_DEVICE_P2P_ATTRIBUTE_ACCESS_ACCESS_SUPPORTED = 0x04
已弃用

请改用CU_DEVICE_P2P_ATTRIBUTE_CUDA_ARRAY_ACCESS_SUPPORTED

CU_DEVICE_P2P_ATTRIBUTE_CUDA_ARRAY_ACCESS_SUPPORTED = 0x04
Accessing CUDA arrays over the link supported
enum CUdevice_attribute

设备属性

数值
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK = 1
Maximum number of threads per block
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X = 2
Maximum block dimension X
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y = 3
Maximum block dimension Y
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z = 4
Maximum block dimension Z
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X = 5
Maximum grid dimension X
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y = 6
Maximum grid dimension Y
CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z = 7
Maximum grid dimension Z
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK = 8
Maximum shared memory available per block in bytes
CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK = 8
Deprecated, use CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK
CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY = 9
Memory available on device for __constant__ variables in a CUDA C kernel in bytes
CU_DEVICE_ATTRIBUTE_WARP_SIZE = 10
Warp size in threads
CU_DEVICE_ATTRIBUTE_MAX_PITCH = 11
Maximum pitch in bytes allowed by memory copies
CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK = 12
Maximum number of 32-bit registers available per block
CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK = 12
Deprecated, use CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK
CU_DEVICE_ATTRIBUTE_CLOCK_RATE = 13
Typical clock frequency in kilohertz
CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT = 14
Alignment requirement for textures
CU_DEVICE_ATTRIBUTE_GPU_OVERLAP = 15
Device can possibly copy memory and execute a kernel concurrently. Deprecated. Use instead CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT.
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT = 16
Number of multiprocessors on device
CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT = 17
Specifies whether there is a run time limit on kernels
CU_DEVICE_ATTRIBUTE_INTEGRATED = 18
Device is integrated with host memory
CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY = 19
Device can map host memory into CUDA address space
CU_DEVICE_ATTRIBUTE_COMPUTE_MODE = 20
Compute mode (See CUcomputemode for details)
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH = 21
Maximum 1D texture width
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH = 22
Maximum 2D texture width
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT = 23
Maximum 2D texture height
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH = 24
Maximum 3D texture width
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT = 25
Maximum 3D texture height
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH = 26
Maximum 3D texture depth
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH = 27
Maximum 2D layered texture width
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT = 28
Maximum 2D layered texture height
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS = 29
Maximum layers in a 2D layered texture
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_WIDTH = 27
Deprecated, use CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_HEIGHT = 28
Deprecated, use CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_NUMSLICES = 29
Deprecated, use CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS
CU_DEVICE_ATTRIBUTE_SURFACE_ALIGNMENT = 30
Alignment requirement for surfaces
CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS = 31
Device can possibly execute multiple kernels concurrently
CU_DEVICE_ATTRIBUTE_ECC_ENABLED = 32
Device has ECC support enabled
CU_DEVICE_ATTRIBUTE_PCI_BUS_ID = 33
PCI bus ID of the device
CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID = 34
PCI device ID of the device
CU_DEVICE_ATTRIBUTE_TCC_DRIVER = 35
Device is using TCC driver model
CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE = 36
Peak memory clock frequency in kilohertz
CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH = 37
Global memory bus width in bits
CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE = 38
Size of L2 cache in bytes
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR = 39
Maximum resident threads per multiprocessor
CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT = 40
Number of asynchronous engines
CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING = 41
Device shares a unified address space with the host
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_WIDTH = 42
Maximum 1D layered texture width
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_LAYERS = 43
Maximum layers in a 1D layered texture
CU_DEVICE_ATTRIBUTE_CAN_TEX2D_GATHER = 44
Deprecated, do not use.
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_WIDTH = 45
Maximum 2D texture width if CUDA_ARRAY3D_TEXTURE_GATHER is set
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_HEIGHT = 46
Maximum 2D texture height if CUDA_ARRAY3D_TEXTURE_GATHER is set
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH_ALTERNATE = 47
Alternate maximum 3D texture width
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT_ALTERNATE = 48
Alternate maximum 3D texture height
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH_ALTERNATE = 49
Alternate maximum 3D texture depth
CU_DEVICE_ATTRIBUTE_PCI_DOMAIN_ID = 50
PCI domain ID of the device
CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT = 51
Pitch alignment requirement for textures
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_WIDTH = 52
Maximum cubemap texture width/height
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_WIDTH = 53
Maximum cubemap layered texture width/height
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_LAYERS = 54
Maximum layers in a cubemap layered texture
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_WIDTH = 55
Maximum 1D surface width
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_WIDTH = 56
Maximum 2D surface width
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_HEIGHT = 57
Maximum 2D surface height
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_WIDTH = 58
Maximum 3D surface width
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_HEIGHT = 59
Maximum 3D surface height
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_DEPTH = 60
Maximum 3D surface depth
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_WIDTH = 61
Maximum 1D layered surface width
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_LAYERS = 62
Maximum layers in a 1D layered surface
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_WIDTH = 63
Maximum 2D layered surface width
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_HEIGHT = 64
Maximum 2D layered surface height
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_LAYERS = 65
Maximum layers in a 2D layered surface
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_WIDTH = 66
Maximum cubemap surface width
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_WIDTH = 67
Maximum cubemap layered surface width
CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_LAYERS = 68
Maximum layers in a cubemap layered surface
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LINEAR_WIDTH = 69
Deprecated, do not use. Use cudaDeviceGetTexture1DLinearMaxWidth() or cuDeviceGetTexture1DLinearMaxWidth() instead.
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_WIDTH = 70
Maximum 2D linear texture width
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_HEIGHT = 71
Maximum 2D linear texture height
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_PITCH = 72
Maximum 2D linear texture pitch in bytes
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_WIDTH = 73
Maximum mipmapped 2D texture width
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_HEIGHT = 74
Maximum mipmapped 2D texture height
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR = 75
Major compute capability version number
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR = 76
Minor compute capability version number
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_MIPMAPPED_WIDTH = 77
Maximum mipmapped 1D texture width
CU_DEVICE_ATTRIBUTE_STREAM_PRIORITIES_SUPPORTED = 78
Device supports stream priorities
CU_DEVICE_ATTRIBUTE_GLOBAL_L1_CACHE_SUPPORTED = 79
Device supports caching globals in L1
CU_DEVICE_ATTRIBUTE_LOCAL_L1_CACHE_SUPPORTED = 80
Device supports caching locals in L1
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR = 81
Maximum shared memory available per multiprocessor in bytes
CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_MULTIPROCESSOR = 82
Maximum number of 32-bit registers available per multiprocessor
CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY = 83
Device can allocate managed memory on this system
CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD = 84
Device is on a multi-GPU board
CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD_GROUP_ID = 85
Unique id for a group of devices on the same multi-GPU board
CU_DEVICE_ATTRIBUTE_HOST_NATIVE_ATOMIC_SUPPORTED = 86
Link between the device and the host supports native atomic operations (this is a placeholder attribute, and is not supported on any current hardware)
CU_DEVICE_ATTRIBUTE_SINGLE_TO_DOUBLE_PRECISION_PERF_RATIO = 87
Ratio of single precision performance (in floating-point operations per second) to double precision performance
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS = 88
Device supports coherently accessing pageable memory without calling cudaHostRegister on it
CU_DEVICE_ATTRIBUTE_CONCURRENT_MANAGED_ACCESS = 89
Device can coherently access managed memory concurrently with the CPU
CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED = 90
Device supports compute preemption.
CU_DEVICE_ATTRIBUTE_CAN_USE_HOST_POINTER_FOR_REGISTERED_MEM = 91
Device can access host registered memory at the same virtual address as the CPU
CU_DEVICE_ATTRIBUTE_CAN_USE_STREAM_MEM_OPS_V1 = 92
Deprecated, along with v1 MemOps API, cuStreamBatchMemOp and related APIs are supported.
CU_DEVICE_ATTRIBUTE_CAN_USE_64_BIT_STREAM_MEM_OPS_V1 = 93
Deprecated, along with v1 MemOps API, 64-bit operations are supported in cuStreamBatchMemOp and related APIs.
CU_DEVICE_ATTRIBUTE_CAN_USE_STREAM_WAIT_VALUE_NOR_V1 = 94
Deprecated, along with v1 MemOps API, CU_STREAM_WAIT_VALUE_NOR is supported.
CU_DEVICE_ATTRIBUTE_COOPERATIVE_LAUNCH = 95
Device supports launching cooperative kernels via cuLaunchCooperativeKernel
CU_DEVICE_ATTRIBUTE_COOPERATIVE_MULTI_DEVICE_LAUNCH = 96
Deprecated, cuLaunchCooperativeKernelMultiDevice is deprecated.
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK_OPTIN = 97
Maximum optin shared memory per block
CU_DEVICE_ATTRIBUTE_CAN_FLUSH_REMOTE_WRITES = 98
The CU_STREAM_WAIT_VALUE_FLUSH flag and the CU_STREAM_MEM_OP_FLUSH_REMOTE_WRITES MemOp are supported on the device. See 流内存操作 for additional details.
CU_DEVICE_ATTRIBUTE_HOST_REGISTER_SUPPORTED = 99
Device supports host memory registration via cudaHostRegister.
CU_DEVICE_ATTRIBUTE_PAGEABLE_MEMORY_ACCESS_USES_HOST_PAGE_TABLES = 100
Device accesses pageable memory via the host's page tables.
CU_DEVICE_ATTRIBUTE_DIRECT_MANAGED_MEM_ACCESS_FROM_HOST = 101
The host can directly access managed memory on the device without migration.
CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED = 102
Deprecated, Use CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED
CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED = 102
Device supports virtual memory management APIs like cuMemAddressReserve, cuMemCreate, cuMemMap and related APIs
CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR_SUPPORTED = 103
Device supports exporting memory to a posix file descriptor with cuMemExportToShareableHandle, if requested via cuMemCreate
CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_WIN32_HANDLE_SUPPORTED = 104
Device supports exporting memory to a Win32 NT handle with cuMemExportToShareableHandle, if requested via cuMemCreate
CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_WIN32_KMT_HANDLE_SUPPORTED = 105
Device supports exporting memory to a Win32 KMT handle with cuMemExportToShareableHandle, if requested via cuMemCreate
CU_DEVICE_ATTRIBUTE_MAX_BLOCKS_PER_MULTIPROCESSOR = 106
Maximum number of blocks per multiprocessor
CU_DEVICE_ATTRIBUTE_GENERIC_COMPRESSION_SUPPORTED = 107
Device supports compression of memory
CU_DEVICE_ATTRIBUTE_MAX_PERSISTING_L2_CACHE_SIZE = 108
Maximum L2 persisting lines capacity setting in bytes.
CU_DEVICE_ATTRIBUTE_MAX_ACCESS_POLICY_WINDOW_SIZE = 109
Maximum value of CUaccessPolicyWindow::num_bytes.
CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_WITH_CUDA_VMM_SUPPORTED = 110
Device supports specifying the GPUDirect RDMA flag with cuMemCreate
CU_DEVICE_ATTRIBUTE_RESERVED_SHARED_MEMORY_PER_BLOCK = 111
Shared memory reserved by CUDA driver per block in bytes
CU_DEVICE_ATTRIBUTE_SPARSE_CUDA_ARRAY_SUPPORTED = 112
Device supports sparse CUDA arrays and sparse CUDA mipmapped arrays
CU_DEVICE_ATTRIBUTE_READ_ONLY_HOST_REGISTER_SUPPORTED = 113
Device supports using the cuMemHostRegister flag CU_MEMHOSTERGISTER_READ_ONLY to register memory that must be mapped as read-only to the GPU
CU_DEVICE_ATTRIBUTE_TIMELINE_SEMAPHORE_INTEROP_SUPPORTED = 114
External timeline semaphore interop is supported on the device
CU_DEVICE_ATTRIBUTE_MEMORY_POOLS_SUPPORTED = 115
Device supports using the cuMemAllocAsync and cuMemPool family of APIs
CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_SUPPORTED = 116
Device supports GPUDirect RDMA APIs, like nvidia_p2p_get_pages (see https://docs.nvidia.com/cuda/gpudirect-rdma for more information)
CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_FLUSH_WRITES_OPTIONS = 117
The returned attribute shall be interpreted as a bitmask, where the individual bits are described by the CUflushGPUDirectRDMAWritesOptions enum
CU_DEVICE_ATTRIBUTE_GPU_DIRECT_RDMA_WRITES_ORDERING = 118
GPUDirect RDMA writes to the device do not need to be flushed for consumers within the scope indicated by the returned attribute. See CUGPUDirectRDMAWritesOrdering for the numerical values returned here.
CU_DEVICE_ATTRIBUTE_MEMPOOL_SUPPORTED_HANDLE_TYPES = 119
Handle types supported with mempool based IPC
CU_DEVICE_ATTRIBUTE_CLUSTER_LAUNCH = 120
Indicates device supports cluster launch
CU_DEVICE_ATTRIBUTE_DEFERRED_MAPPING_CUDA_ARRAY_SUPPORTED = 121
Device supports deferred mapping CUDA arrays and CUDA mipmapped arrays
CU_DEVICE_ATTRIBUTE_CAN_USE_64_BIT_STREAM_MEM_OPS = 122
64-bit operations are supported in cuStreamBatchMemOp and related MemOp APIs.
CU_DEVICE_ATTRIBUTE_CAN_USE_STREAM_WAIT_VALUE_NOR = 123
CU_STREAM_WAIT_VALUE_NOR is supported by MemOp APIs.
CU_DEVICE_ATTRIBUTE_DMA_BUF_SUPPORTED = 124
Device supports buffer sharing with dma_buf mechanism.
CU_DEVICE_ATTRIBUTE_IPC_EVENT_SUPPORTED = 125
Device supports IPC Events.
CU_DEVICE_ATTRIBUTE_MEM_SYNC_DOMAIN_COUNT = 126
Number of memory domains the device supports.
CU_DEVICE_ATTRIBUTE_TENSOR_MAP_ACCESS_SUPPORTED = 127
Device supports accessing memory using Tensor Map.
CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_FABRIC_SUPPORTED = 128
Device supports exporting memory to a fabric handle with cuMemExportToShareableHandle() or requested with cuMemCreate()
CU_DEVICE_ATTRIBUTE_UNIFIED_FUNCTION_POINTERS = 129
Device supports unified function pointers.
CU_DEVICE_ATTRIBUTE_NUMA_CONFIG = 130
NUMA configuration of a device: value is of type CUdeviceNumaConfig enum
CU_DEVICE_ATTRIBUTE_NUMA_ID = 131
NUMA node ID of the GPU memory
CU_DEVICE_ATTRIBUTE_MULTICAST_SUPPORTED = 132
Device supports switch multicast and reduction operations.
CU_DEVICE_ATTRIBUTE_MPS_ENABLED = 133
Indicates if contexts created on this device will be shared via MPS
CU_DEVICE_ATTRIBUTE_HOST_NUMA_ID = 134
NUMA ID of the host node closest to the device. Returns -1 when system does not support NUMA.
CU_DEVICE_ATTRIBUTE_D3D12_CIG_SUPPORTED = 135
Device supports CIG with D3D12.
CU_DEVICE_ATTRIBUTE_MEM_DECOMPRESS_ALGORITHM_MASK = 136
The returned valued shall be interpreted as a bitmask, where the individual bits are described by the CUmemDecompressAlgorithm enum.
CU_DEVICE_ATTRIBUTE_MEM_DECOMPRESS_MAXIMUM_LENGTH = 137
The returned valued is the maximum length in bytes of a single decompress operation that is allowed.
CU_DEVICE_ATTRIBUTE_GPU_PCI_DEVICE_ID = 139
The combined 16-bit PCI device ID and 16-bit PCI vendor ID.
CU_DEVICE_ATTRIBUTE_GPU_PCI_SUBSYSTEM_ID = 140
The combined 16-bit PCI subsystem ID and 16-bit PCI subsystem vendor ID.
CU_DEVICE_ATTRIBUTE_HOST_NUMA_MULTINODE_IPC_SUPPORTED = 143
Device supports HOST_NUMA location IPC between nodes in a multi-node system.
CU_DEVICE_ATTRIBUTE_MAX
enum CUdriverProcAddressQueryResult

用于指示搜索状态的标志。更多详情请参阅cuGetProcAddress

数值
CU_GET_PROC_ADDRESS_SUCCESS = 0
Symbol was succesfully found
CU_GET_PROC_ADDRESS_SYMBOL_NOT_FOUND = 1
Symbol was not found in search
CU_GET_PROC_ADDRESS_VERSION_NOT_SUFFICIENT = 2
Symbol was found but version supplied was not sufficient
enum CUdriverProcAddress_flags

用于指定搜索选项的标志。更多详情请参阅cuGetProcAddress

数值
CU_GET_PROC_ADDRESS_DEFAULT = 0
Default search mode for driver symbols.
CU_GET_PROC_ADDRESS_LEGACY_STREAM = 1<<0
Search for legacy versions of driver symbols.
CU_GET_PROC_ADDRESS_PER_THREAD_DEFAULT_STREAM = 1<<1
Search for per-thread versions of driver symbols.
enum CUeglColorFormat

CUDA EGL颜色格式 - 当前CUDA_EGL互操作支持的不同平面和多平面格式。三通道格式目前不支持CU_EGL_FRAME_TYPE_ARRAY

数值
CU_EGL_COLOR_FORMAT_YUV420_PLANAR = 0x00
Y, U, V in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_YUV420_SEMIPLANAR = 0x01
Y, UV in two surfaces (UV as one surface) with VU byte ordering, width, height ratio same as YUV420Planar.
CU_EGL_COLOR_FORMAT_YUV422_PLANAR = 0x02
Y, U, V each in a separate surface, U/V width = 1/2 Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YUV422_SEMIPLANAR = 0x03
Y, UV in two surfaces with VU byte ordering, width, height ratio same as YUV422Planar.
CU_EGL_COLOR_FORMAT_RGB = 0x04
R/G/B three channels in one surface with BGR byte ordering. Only pitch linear format supported.
CU_EGL_COLOR_FORMAT_BGR = 0x05
R/G/B three channels in one surface with RGB byte ordering. Only pitch linear format supported.
CU_EGL_COLOR_FORMAT_ARGB = 0x06
R/G/B/A four channels in one surface with BGRA byte ordering.
CU_EGL_COLOR_FORMAT_RGBA = 0x07
R/G/B/A four channels in one surface with ABGR byte ordering.
CU_EGL_COLOR_FORMAT_L = 0x08
single luminance channel in one surface.
CU_EGL_COLOR_FORMAT_R = 0x09
single color channel in one surface.
CU_EGL_COLOR_FORMAT_YUV444_PLANAR = 0x0A
Y, U, V in three surfaces, each in a separate surface, U/V width = Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YUV444_SEMIPLANAR = 0x0B
Y, UV in two surfaces (UV as one surface) with VU byte ordering, width, height ratio same as YUV444Planar.
CU_EGL_COLOR_FORMAT_YUYV_422 = 0x0C
Y, U, V in one surface, interleaved as UYVY in one channel.
CU_EGL_COLOR_FORMAT_UYVY_422 = 0x0D
Y, U, V in one surface, interleaved as YUYV in one channel.
CU_EGL_COLOR_FORMAT_ABGR = 0x0E
R/G/B/A four channels in one surface with RGBA byte ordering.
CU_EGL_COLOR_FORMAT_BGRA = 0x0F
R/G/B/A four channels in one surface with ARGB byte ordering.
CU_EGL_COLOR_FORMAT_A = 0x10
Alpha color format - one channel in one surface.
CU_EGL_COLOR_FORMAT_RG = 0x11
R/G color format - two channels in one surface with GR byte ordering
CU_EGL_COLOR_FORMAT_AYUV = 0x12
Y, U, V, A four channels in one surface, interleaved as VUYA.
CU_EGL_COLOR_FORMAT_YVU444_SEMIPLANAR = 0x13
Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YVU422_SEMIPLANAR = 0x14
Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YVU420_SEMIPLANAR = 0x15
Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_Y10V10U10_444_SEMIPLANAR = 0x16
Y10, V10U10 in two surfaces (VU as one surface) with UV byte ordering, U/V width = Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_Y10V10U10_420_SEMIPLANAR = 0x17
Y10, V10U10 in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_Y12V12U12_444_SEMIPLANAR = 0x18
Y12, V12U12 in two surfaces (VU as one surface) with UV byte ordering, U/V width = Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_Y12V12U12_420_SEMIPLANAR = 0x19
Y12, V12U12 in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_VYUY_ER = 0x1A
Extended Range Y, U, V in one surface, interleaved as YVYU in one channel.
CU_EGL_COLOR_FORMAT_UYVY_ER = 0x1B
Extended Range Y, U, V in one surface, interleaved as YUYV in one channel.
CU_EGL_COLOR_FORMAT_YUYV_ER = 0x1C
Extended Range Y, U, V in one surface, interleaved as UYVY in one channel.
CU_EGL_COLOR_FORMAT_YVYU_ER = 0x1D
Extended Range Y, U, V in one surface, interleaved as VYUY in one channel.
CU_EGL_COLOR_FORMAT_YUV_ER = 0x1E
Extended Range Y, U, V three channels in one surface, interleaved as VUY. Only pitch linear format supported.
CU_EGL_COLOR_FORMAT_YUVA_ER = 0x1F
Extended Range Y, U, V, A four channels in one surface, interleaved as AVUY.
CU_EGL_COLOR_FORMAT_AYUV_ER = 0x20
Extended Range Y, U, V, A four channels in one surface, interleaved as VUYA.
CU_EGL_COLOR_FORMAT_YUV444_PLANAR_ER = 0x21
Extended Range Y, U, V in three surfaces, U/V width = Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YUV422_PLANAR_ER = 0x22
Extended Range Y, U, V in three surfaces, U/V width = 1/2 Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YUV420_PLANAR_ER = 0x23
Extended Range Y, U, V in three surfaces, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_YUV444_SEMIPLANAR_ER = 0x24
Extended Range Y, UV in two surfaces (UV as one surface) with VU byte ordering, U/V width = Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YUV422_SEMIPLANAR_ER = 0x25
Extended Range Y, UV in two surfaces (UV as one surface) with VU byte ordering, U/V width = 1/2 Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YUV420_SEMIPLANAR_ER = 0x26
Extended Range Y, UV in two surfaces (UV as one surface) with VU byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_YVU444_PLANAR_ER = 0x27
Extended Range Y, V, U in three surfaces, U/V width = Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YVU422_PLANAR_ER = 0x28
Extended Range Y, V, U in three surfaces, U/V width = 1/2 Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YVU420_PLANAR_ER = 0x29
Extended Range Y, V, U in three surfaces, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_YVU444_SEMIPLANAR_ER = 0x2A
Extended Range Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YVU422_SEMIPLANAR_ER = 0x2B
Extended Range Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YVU420_SEMIPLANAR_ER = 0x2C
Extended Range Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_BAYER_RGGB = 0x2D
Bayer format - one channel in one surface with interleaved RGGB ordering.
CU_EGL_COLOR_FORMAT_BAYER_BGGR = 0x2E
Bayer format - one channel in one surface with interleaved BGGR ordering.
CU_EGL_COLOR_FORMAT_BAYER_GRBG = 0x2F
Bayer format - one channel in one surface with interleaved GRBG ordering.
CU_EGL_COLOR_FORMAT_BAYER_GBRG = 0x30
Bayer format - one channel in one surface with interleaved GBRG ordering.
CU_EGL_COLOR_FORMAT_BAYER10_RGGB = 0x31
Bayer10 format - one channel in one surface with interleaved RGGB ordering. Out of 16 bits, 10 bits used 6 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER10_BGGR = 0x32
Bayer10 format - one channel in one surface with interleaved BGGR ordering. Out of 16 bits, 10 bits used 6 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER10_GRBG = 0x33
Bayer10 format - one channel in one surface with interleaved GRBG ordering. Out of 16 bits, 10 bits used 6 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER10_GBRG = 0x34
Bayer10 format - one channel in one surface with interleaved GBRG ordering. Out of 16 bits, 10 bits used 6 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER12_RGGB = 0x35
Bayer12 format - one channel in one surface with interleaved RGGB ordering. Out of 16 bits, 12 bits used 4 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER12_BGGR = 0x36
Bayer12 format - one channel in one surface with interleaved BGGR ordering. Out of 16 bits, 12 bits used 4 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER12_GRBG = 0x37
Bayer12 format - one channel in one surface with interleaved GRBG ordering. Out of 16 bits, 12 bits used 4 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER12_GBRG = 0x38
Bayer12 format - one channel in one surface with interleaved GBRG ordering. Out of 16 bits, 12 bits used 4 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER14_RGGB = 0x39
Bayer14 format - one channel in one surface with interleaved RGGB ordering. Out of 16 bits, 14 bits used 2 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER14_BGGR = 0x3A
Bayer14 format - one channel in one surface with interleaved BGGR ordering. Out of 16 bits, 14 bits used 2 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER14_GRBG = 0x3B
Bayer14 format - one channel in one surface with interleaved GRBG ordering. Out of 16 bits, 14 bits used 2 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER14_GBRG = 0x3C
Bayer14 format - one channel in one surface with interleaved GBRG ordering. Out of 16 bits, 14 bits used 2 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER20_RGGB = 0x3D
Bayer20 format - one channel in one surface with interleaved RGGB ordering. Out of 32 bits, 20 bits used 12 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER20_BGGR = 0x3E
Bayer20 format - one channel in one surface with interleaved BGGR ordering. Out of 32 bits, 20 bits used 12 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER20_GRBG = 0x3F
Bayer20 format - one channel in one surface with interleaved GRBG ordering. Out of 32 bits, 20 bits used 12 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER20_GBRG = 0x40
Bayer20 format - one channel in one surface with interleaved GBRG ordering. Out of 32 bits, 20 bits used 12 bits No-op.
CU_EGL_COLOR_FORMAT_YVU444_PLANAR = 0x41
Y, V, U in three surfaces, each in a separate surface, U/V width = Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YVU422_PLANAR = 0x42
Y, V, U in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_YVU420_PLANAR = 0x43
Y, V, U in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_BAYER_ISP_RGGB = 0x44
Nvidia proprietary Bayer ISP format - one channel in one surface with interleaved RGGB ordering and mapped to opaque integer datatype.
CU_EGL_COLOR_FORMAT_BAYER_ISP_BGGR = 0x45
Nvidia proprietary Bayer ISP format - one channel in one surface with interleaved BGGR ordering and mapped to opaque integer datatype.
CU_EGL_COLOR_FORMAT_BAYER_ISP_GRBG = 0x46
Nvidia proprietary Bayer ISP format - one channel in one surface with interleaved GRBG ordering and mapped to opaque integer datatype.
CU_EGL_COLOR_FORMAT_BAYER_ISP_GBRG = 0x47
Nvidia proprietary Bayer ISP format - one channel in one surface with interleaved GBRG ordering and mapped to opaque integer datatype.
CU_EGL_COLOR_FORMAT_BAYER_BCCR = 0x48
Bayer format - one channel in one surface with interleaved BCCR ordering.
CU_EGL_COLOR_FORMAT_BAYER_RCCB = 0x49
Bayer format - one channel in one surface with interleaved RCCB ordering.
CU_EGL_COLOR_FORMAT_BAYER_CRBC = 0x4A
Bayer format - one channel in one surface with interleaved CRBC ordering.
CU_EGL_COLOR_FORMAT_BAYER_CBRC = 0x4B
Bayer format - one channel in one surface with interleaved CBRC ordering.
CU_EGL_COLOR_FORMAT_BAYER10_CCCC = 0x4C
Bayer10 format - one channel in one surface with interleaved CCCC ordering. Out of 16 bits, 10 bits used 6 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER12_BCCR = 0x4D
Bayer12 format - one channel in one surface with interleaved BCCR ordering. Out of 16 bits, 12 bits used 4 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER12_RCCB = 0x4E
Bayer12 format - one channel in one surface with interleaved RCCB ordering. Out of 16 bits, 12 bits used 4 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER12_CRBC = 0x4F
Bayer12 format - one channel in one surface with interleaved CRBC ordering. Out of 16 bits, 12 bits used 4 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER12_CBRC = 0x50
Bayer12 format - one channel in one surface with interleaved CBRC ordering. Out of 16 bits, 12 bits used 4 bits No-op.
CU_EGL_COLOR_FORMAT_BAYER12_CCCC = 0x51
Bayer12 format - one channel in one surface with interleaved CCCC ordering. Out of 16 bits, 12 bits used 4 bits No-op.
CU_EGL_COLOR_FORMAT_Y = 0x52
Color format for single Y plane.
CU_EGL_COLOR_FORMAT_YUV420_SEMIPLANAR_2020 = 0x53
Y, UV in two surfaces (UV as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_YVU420_SEMIPLANAR_2020 = 0x54
Y, VU in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_YUV420_PLANAR_2020 = 0x55
Y, U, V each in a separate surface, U/V width = 1/2 Y width, U/V height= 1/2 Y height.
CU_EGL_COLOR_FORMAT_YVU420_PLANAR_2020 = 0x56
Y, V, U each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_YUV420_SEMIPLANAR_709 = 0x57
Y, UV in two surfaces (UV as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_YVU420_SEMIPLANAR_709 = 0x58
Y, VU in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_YUV420_PLANAR_709 = 0x59
Y, U, V each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_YVU420_PLANAR_709 = 0x5A
Y, V, U each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_Y10V10U10_420_SEMIPLANAR_709 = 0x5B
Y10, V10U10 in two surfaces (VU as one surface), U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_Y10V10U10_420_SEMIPLANAR_2020 = 0x5C
Y10, V10U10 in two surfaces (VU as one surface), U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_Y10V10U10_422_SEMIPLANAR_2020 = 0x5D
Y10, V10U10 in two surfaces(VU as one surface) U/V width = 1/2 Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_Y10V10U10_422_SEMIPLANAR = 0x5E
Y10, V10U10 in two surfaces(VU as one surface) U/V width = 1/2 Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_Y10V10U10_422_SEMIPLANAR_709 = 0x5F
Y10, V10U10 in two surfaces(VU as one surface) U/V width = 1/2 Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_Y_ER = 0x60
Extended Range Color format for single Y plane.
CU_EGL_COLOR_FORMAT_Y_709_ER = 0x61
Extended Range Color format for single Y plane.
CU_EGL_COLOR_FORMAT_Y10_ER = 0x62
Extended Range Color format for single Y10 plane.
CU_EGL_COLOR_FORMAT_Y10_709_ER = 0x63
Extended Range Color format for single Y10 plane.
CU_EGL_COLOR_FORMAT_Y12_ER = 0x64
Extended Range Color format for single Y12 plane.
CU_EGL_COLOR_FORMAT_Y12_709_ER = 0x65
Extended Range Color format for single Y12 plane.
CU_EGL_COLOR_FORMAT_YUVA = 0x66
Y, U, V, A four channels in one surface, interleaved as AVUY.
CU_EGL_COLOR_FORMAT_YUV = 0x67
Y, U, V three channels in one surface, interleaved as VUY. Only pitch linear format supported.
CU_EGL_COLOR_FORMAT_YVYU = 0x68
Y, U, V in one surface, interleaved as YVYU in one channel.
CU_EGL_COLOR_FORMAT_VYUY = 0x69
Y, U, V in one surface, interleaved as VYUY in one channel.
CU_EGL_COLOR_FORMAT_Y10V10U10_420_SEMIPLANAR_ER = 0x6A
Extended Range Y10, V10U10 in two surfaces(VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_Y10V10U10_420_SEMIPLANAR_709_ER = 0x6B
Extended Range Y10, V10U10 in two surfaces(VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_Y10V10U10_444_SEMIPLANAR_ER = 0x6C
Extended Range Y10, V10U10 in two surfaces (VU as one surface) U/V width = Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_Y10V10U10_444_SEMIPLANAR_709_ER = 0x6D
Extended Range Y10, V10U10 in two surfaces (VU as one surface) U/V width = Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_Y12V12U12_420_SEMIPLANAR_ER = 0x6E
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_Y12V12U12_420_SEMIPLANAR_709_ER = 0x6F
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CU_EGL_COLOR_FORMAT_Y12V12U12_444_SEMIPLANAR_ER = 0x70
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_Y12V12U12_444_SEMIPLANAR_709_ER = 0x71
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = Y width, U/V height = Y height.
CU_EGL_COLOR_FORMAT_UYVY_709 = 0x72
Y, U, V in one surface, interleaved as UYVY in one channel.
CU_EGL_COLOR_FORMAT_UYVY_709_ER = 0x73
Extended Range Y, U, V in one surface, interleaved as UYVY in one channel.
CU_EGL_COLOR_FORMAT_UYVY_2020 = 0x74
Y, U, V in one surface, interleaved as UYVY in one channel.
CU_EGL_COLOR_FORMAT_MAX
enum CUeglFrameType

CUDA EglFrame类型 - 数组或指针

数值
CU_EGL_FRAME_TYPE_ARRAY = 0
Frame type CUDA array
CU_EGL_FRAME_TYPE_PITCH = 1
Frame type pointer
enum CUeglResourceLocationFlags

资源位置标志 - 系统内存(sysmem)或显存(vidmem)

对于iGPU上的CUDA上下文,由于视频内存和系统内存是等效的——这些标志不会对执行产生影响。

对于dGPU上的CUDA上下文,应用程序可以使用标志CUeglResourceLocationFlags来提示所需的位置。

CU_EGL_RESOURCE_LOCATION_SYSMEM - 帧数据驻留在系统内存中,供CUDA访问。

CU_EGL_RESOURCE_LOCATION_VIDMEM - 帧数据驻留在专用视频内存中,供CUDA访问。

如果帧是在不同的内存上生成的,可能会由于新的分配和数据迁移而产生额外的延迟。

数值
CU_EGL_RESOURCE_LOCATION_SYSMEM = 0x00
Resource location sysmem
CU_EGL_RESOURCE_LOCATION_VIDMEM = 0x01
Resource location vidmem
enum CUevent_flags

事件创建标志

数值
CU_EVENT_DEFAULT = 0x0
Default event flag
CU_EVENT_BLOCKING_SYNC = 0x1
Event uses blocking synchronization
CU_EVENT_DISABLE_TIMING = 0x2
Event will not record timing data
CU_EVENT_INTERPROCESS = 0x4
Event is suitable for interprocess use. CU_EVENT_DISABLE_TIMING must be set
enum CUevent_record_flags

事件记录标志

数值
CU_EVENT_RECORD_DEFAULT = 0x0
Default event record flag
CU_EVENT_RECORD_EXTERNAL = 0x1
When using stream capture, create an event record node instead of the default behavior. This flag is invalid when used outside of capture.
enum CUevent_sched_flags

事件调度标志

数值
CU_EVENT_SCHED_AUTO = 0x00
Automatic scheduling
CU_EVENT_SCHED_SPIN = 0x01
Set spin as default scheduling
CU_EVENT_SCHED_YIELD = 0x02
Set yield as default scheduling
CU_EVENT_SCHED_BLOCKING_SYNC = 0x04
Set blocking synchronization as default scheduling
enum CUevent_wait_flags

事件等待标志

数值
CU_EVENT_WAIT_DEFAULT = 0x0
Default event wait flag
CU_EVENT_WAIT_EXTERNAL = 0x1
When using stream capture, create an event wait node instead of the default behavior. This flag is invalid when used outside of capture.
enum CUexecAffinityType

执行亲和性类型

数值
CU_EXEC_AFFINITY_TYPE_SM_COUNT = 0
Create a context with limited SMs.
CU_EXEC_AFFINITY_TYPE_MAX
enum CUexternalMemoryHandleType

外部内存句柄类型

数值
CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD = 1
Handle is an opaque file descriptor
CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32 = 2
Handle is an opaque shared NT handle
CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT = 3
Handle is an opaque, globally shared handle
CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_HEAP = 4
Handle is a D3D12 heap object
CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D12_RESOURCE = 5
Handle is a D3D12 committed resource
CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_RESOURCE = 6
Handle is a shared NT handle to a D3D11 resource
CU_EXTERNAL_MEMORY_HANDLE_TYPE_D3D11_RESOURCE_KMT = 7
Handle is a globally shared handle to a D3D11 resource
CU_EXTERNAL_MEMORY_HANDLE_TYPE_NVSCIBUF = 8
Handle is an NvSciBuf object
enum CUexternalSemaphoreHandleType

外部信号量句柄类型

数值
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD = 1
Handle is an opaque file descriptor
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32 = 2
Handle is an opaque shared NT handle
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT = 3
Handle is an opaque, globally shared handle
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D12_FENCE = 4
Handle is a shared NT handle referencing a D3D12 fence object
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_FENCE = 5
Handle is a shared NT handle referencing a D3D11 fence object
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_NVSCISYNC = 6
Opaque handle to NvSciSync Object
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_KEYED_MUTEX = 7
Handle is a shared NT handle referencing a D3D11 keyed mutex object
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_D3D11_KEYED_MUTEX_KMT = 8
Handle is a globally shared handle referencing a D3D11 keyed mutex object
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_FD = 9
Handle is an opaque file descriptor referencing a timeline semaphore
CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_WIN32 = 10
Handle is an opaque shared NT handle referencing a timeline semaphore
enum CUfilter_mode

纹理引用过滤模式

数值
CU_TR_FILTER_MODE_POINT = 0
Point filter mode
CU_TR_FILTER_MODE_LINEAR = 1
Linear filter mode
enum CUflushGPUDirectRDMAWritesOptions
数值
CU_FLUSH_GPU_DIRECT_RDMA_WRITES_OPTION_HOST = 1<<0
cuFlushGPUDirectRDMAWrites() and its CUDA Runtime API counterpart are supported on the device.
CU_FLUSH_GPU_DIRECT_RDMA_WRITES_OPTION_MEMOPS = 1<<1
The CU_STREAM_WAIT_VALUE_FLUSH flag and the CU_STREAM_MEM_OP_FLUSH_REMOTE_WRITES MemOp are supported on the device.
enum CUflushGPUDirectRDMAWritesScope
数值
CU_FLUSH_GPU_DIRECT_RDMA_WRITES_TO_OWNER = 100
Blocks until remote writes are visible to the CUDA device context owning the data.
CU_FLUSH_GPU_DIRECT_RDMA_WRITES_TO_ALL_DEVICES = 200
Blocks until remote writes are visible to all CUDA device contexts.
enum CUflushGPUDirectRDMAWritesTarget
数值
CU_FLUSH_GPU_DIRECT_RDMA_WRITES_TARGET_CURRENT_CTX = 0
Sets the target for cuFlushGPUDirectRDMAWrites() to the currently active CUDA device context.
enum CUfunc_cache

函数缓存配置

数值
CU_FUNC_CACHE_PREFER_NONE = 0x00
no preference for shared memory or L1 (default)
CU_FUNC_CACHE_PREFER_SHARED = 0x01
prefer larger shared memory and smaller L1 cache
CU_FUNC_CACHE_PREFER_L1 = 0x02
prefer larger L1 cache and smaller shared memory
CU_FUNC_CACHE_PREFER_EQUAL = 0x03
prefer equal sized L1 cache and shared memory
enum CUfunction_attribute

函数属性

数值
CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK = 0
The maximum number of threads per block, beyond which a launch of the function would fail. This number depends on both the function and the device on which the function is currently loaded.
CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES = 1
The size in bytes of statically-allocated shared memory required by this function. This does not include dynamically-allocated shared memory requested by the user at runtime.
CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES = 2
The size in bytes of user-allocated constant memory required by this function.
CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES = 3
The size in bytes of local memory used by each thread of this function.
CU_FUNC_ATTRIBUTE_NUM_REGS = 4
The number of registers used by each thread of this function.
CU_FUNC_ATTRIBUTE_PTX_VERSION = 5
The PTX virtual architecture version for which the function was compiled. This value is the major PTX version * 10 + the minor PTX version, so a PTX version 1.3 function would return the value 13. Note that this may return the undefined value of 0 for cubins compiled prior to CUDA 3.0.
CU_FUNC_ATTRIBUTE_BINARY_VERSION = 6
The binary architecture version for which the function was compiled. This value is the major binary version * 10 + the minor binary version, so a binary version 1.3 function would return the value 13. Note that this will return a value of 10 for legacy cubins that do not have a properly-encoded binary architecture version.
CU_FUNC_ATTRIBUTE_CACHE_MODE_CA = 7
The attribute to indicate whether the function has been compiled with user specified option "-Xptxas --dlcm=ca" set .
CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES = 8
The maximum size in bytes of dynamically-allocated shared memory that can be used by this function. If the user-specified dynamic shared memory size is larger than this value, the launch will fail. See cuFuncSetAttribute, cuKernelSetAttribute
CU_FUNC_ATTRIBUTE_PREFERRED_SHARED_MEMORY_CARVEOUT = 9
On devices where the L1 cache and shared memory use the same hardware resources, this sets the shared memory carveout preference, in percent of the total shared memory. Refer to CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR. This is only a hint, and the driver can choose a different ratio if required to execute the function. See cuFuncSetAttribute, cuKernelSetAttribute
CU_FUNC_ATTRIBUTE_CLUSTER_SIZE_MUST_BE_SET = 10
If this attribute is set, the kernel must launch with a valid cluster size specified. See cuFuncSetAttribute, cuKernelSetAttribute
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_WIDTH = 11
The required cluster width in blocks. The values must either all be 0 or all be positive. The validity of the cluster dimensions is otherwise checked at launch time.If the value is set during compile time, it cannot be set at runtime. Setting it at runtime will return CUDA_ERROR_NOT_PERMITTED. See cuFuncSetAttribute, cuKernelSetAttribute
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_HEIGHT = 12
The required cluster height in blocks. The values must either all be 0 or all be positive. The validity of the cluster dimensions is otherwise checked at launch time.If the value is set during compile time, it cannot be set at runtime. Setting it at runtime should return CUDA_ERROR_NOT_PERMITTED. See cuFuncSetAttribute, cuKernelSetAttribute
CU_FUNC_ATTRIBUTE_REQUIRED_CLUSTER_DEPTH = 13
The required cluster depth in blocks. The values must either all be 0 or all be positive. The validity of the cluster dimensions is otherwise checked at launch time.If the value is set during compile time, it cannot be set at runtime. Setting it at runtime should return CUDA_ERROR_NOT_PERMITTED. See cuFuncSetAttribute, cuKernelSetAttribute
CU_FUNC_ATTRIBUTE_NON_PORTABLE_CLUSTER_SIZE_ALLOWED = 14
Whether the function can be launched with non-portable cluster size. 1 is allowed, 0 is disallowed. A non-portable cluster size may only function on the specific SKUs the program is tested on. The launch might fail if the program is run on a different hardware platform.CUDA API provides cudaOccupancyMaxActiveClusters to assist with checking whether the desired size can be launched on the current device.Portable Cluster SizeA portable cluster size is guaranteed to be functional on all compute capabilities higher than the target compute capability. The portable cluster size for sm_90 is 8 blocks per cluster. This value may increase for future compute capabilities.The specific hardware unit may support higher cluster sizes that’s not guaranteed to be portable. See cuFuncSetAttribute, cuKernelSetAttribute
CU_FUNC_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE = 15
The block scheduling policy of a function. The value type is CUclusterSchedulingPolicy / cudaClusterSchedulingPolicy. See cuFuncSetAttribute, cuKernelSetAttribute
CU_FUNC_ATTRIBUTE_MAX
enum CUgraphConditionalNodeType

条件节点类型

数值
CU_GRAPH_COND_TYPE_IF = 0
Conditional 'if/else' Node. Body[0] executed if condition is non-zero. If size == 2, an optional ELSE graph is created and this is executed if the condition is zero.
CU_GRAPH_COND_TYPE_WHILE = 1
Conditional 'while' Node. Body executed repeatedly while condition value is non-zero.
CU_GRAPH_COND_TYPE_SWITCH = 2
Conditional 'switch' Node. Body[n] is executed once, where 'n' is the value of the condition. If the condition does not match a body index, no body is launched.
enum CUgraphDebugDot_flags

cuGraphDebugDotPrint的额外写入选项

数值
CU_GRAPH_DEBUG_DOT_FLAGS_VERBOSE = 1<<0
Output all debug data as if every debug flag is enabled
CU_GRAPH_DEBUG_DOT_FLAGS_RUNTIME_TYPES = 1<<1
Use CUDA Runtime structures for output
CU_GRAPH_DEBUG_DOT_FLAGS_KERNEL_NODE_PARAMS = 1<<2
Adds CUDA_KERNEL_NODE_PARAMS values to output
CU_GRAPH_DEBUG_DOT_FLAGS_MEMCPY_NODE_PARAMS = 1<<3
Adds CUDA_MEMCPY3D values to output
CU_GRAPH_DEBUG_DOT_FLAGS_MEMSET_NODE_PARAMS = 1<<4
Adds CUDA_MEMSET_NODE_PARAMS values to output
CU_GRAPH_DEBUG_DOT_FLAGS_HOST_NODE_PARAMS = 1<<5
Adds CUDA_HOST_NODE_PARAMS values to output
CU_GRAPH_DEBUG_DOT_FLAGS_EVENT_NODE_PARAMS = 1<<6
Adds CUevent handle from record and wait nodes to output
CU_GRAPH_DEBUG_DOT_FLAGS_EXT_SEMAS_SIGNAL_NODE_PARAMS = 1<<7
Adds CUDA_EXT_SEM_SIGNAL_NODE_PARAMS values to output
CU_GRAPH_DEBUG_DOT_FLAGS_EXT_SEMAS_WAIT_NODE_PARAMS = 1<<8
Adds CUDA_EXT_SEM_WAIT_NODE_PARAMS values to output
CU_GRAPH_DEBUG_DOT_FLAGS_KERNEL_NODE_ATTRIBUTES = 1<<9
Adds CUkernelNodeAttrValue values to output
CU_GRAPH_DEBUG_DOT_FLAGS_HANDLES = 1<<10
Adds node handles and every kernel function handle to output
CU_GRAPH_DEBUG_DOT_FLAGS_MEM_ALLOC_NODE_PARAMS = 1<<11
Adds memory alloc node parameters to output
CU_GRAPH_DEBUG_DOT_FLAGS_MEM_FREE_NODE_PARAMS = 1<<12
Adds memory free node parameters to output
CU_GRAPH_DEBUG_DOT_FLAGS_BATCH_MEM_OP_NODE_PARAMS = 1<<13
Adds batch mem op node parameters to output
CU_GRAPH_DEBUG_DOT_FLAGS_EXTRA_TOPO_INFO = 1<<14
Adds edge numbering information
CU_GRAPH_DEBUG_DOT_FLAGS_CONDITIONAL_NODE_PARAMS = 1<<15
Adds conditional node parameters to output
enum CUgraphDependencyType

可作为CUgraphEdgeData一部分应用于图边的类型注解。

数值
CU_GRAPH_DEPENDENCY_TYPE_DEFAULT = 0
This is an ordinary dependency.
CU_GRAPH_DEPENDENCY_TYPE_PROGRAMMATIC = 1
This dependency type allows the downstream node to use cudaGridDependencySynchronize(). It may only be used between kernel nodes, and must be used with either the CU_GRAPH_KERNEL_NODE_PORT_PROGRAMMATIC or CU_GRAPH_KERNEL_NODE_PORT_LAUNCH_ORDER outgoing port.
enum CUgraphExecUpdateResult

CUDA Graph 更新错误类型

数值
CU_GRAPH_EXEC_UPDATE_SUCCESS = 0x0
The update succeeded
CU_GRAPH_EXEC_UPDATE_ERROR = 0x1
The update failed for an unexpected reason which is described in the return value of the function
CU_GRAPH_EXEC_UPDATE_ERROR_TOPOLOGY_CHANGED = 0x2
The update failed because the topology changed
CU_GRAPH_EXEC_UPDATE_ERROR_NODE_TYPE_CHANGED = 0x3
The update failed because a node type changed
CU_GRAPH_EXEC_UPDATE_ERROR_FUNCTION_CHANGED = 0x4
The update failed because the function of a kernel node changed (CUDA driver < 11.2)
CU_GRAPH_EXEC_UPDATE_ERROR_PARAMETERS_CHANGED = 0x5
The update failed because the parameters changed in a way that is not supported
CU_GRAPH_EXEC_UPDATE_ERROR_NOT_SUPPORTED = 0x6
The update failed because something about the node is not supported
CU_GRAPH_EXEC_UPDATE_ERROR_UNSUPPORTED_FUNCTION_CHANGE = 0x7
The update failed because the function of a kernel node changed in an unsupported way
CU_GRAPH_EXEC_UPDATE_ERROR_ATTRIBUTES_CHANGED = 0x8
The update failed because the node attributes changed in a way that is not supported
enum CUgraphInstantiateResult

图实例化结果

数值
CUDA_GRAPH_INSTANTIATE_SUCCESS = 0
Instantiation succeeded
CUDA_GRAPH_INSTANTIATE_ERROR = 1
Instantiation failed for an unexpected reason which is described in the return value of the function
CUDA_GRAPH_INSTANTIATE_INVALID_STRUCTURE = 2
Instantiation failed due to invalid structure, such as cycles
CUDA_GRAPH_INSTANTIATE_NODE_OPERATION_NOT_SUPPORTED = 3
Instantiation for device launch failed because the graph contained an unsupported operation
CUDA_GRAPH_INSTANTIATE_MULTIPLE_CTXS_NOT_SUPPORTED = 4
Instantiation for device launch failed due to the nodes belonging to different contexts
CUDA_GRAPH_INSTANTIATE_CONDITIONAL_HANDLE_UNUSED = 5
One or more conditional handles are not associated with conditional nodes
enum CUgraphInstantiate_flags

用于实例化图表的标志

数值
CUDA_GRAPH_INSTANTIATE_FLAG_AUTO_FREE_ON_LAUNCH = 1
Automatically free memory allocated in a graph before relaunching.
CUDA_GRAPH_INSTANTIATE_FLAG_UPLOAD = 2
Automatically upload the graph after instantiation. Only supported by cuGraphInstantiateWithParams. The upload will be performed using the stream provided in instantiateParams.
CUDA_GRAPH_INSTANTIATE_FLAG_DEVICE_LAUNCH = 4
Instantiate the graph to be launchable from the device. This flag can only be used on platforms which support unified addressing. This flag cannot be used in conjunction with CUDA_GRAPH_INSTANTIATE_FLAG_AUTO_FREE_ON_LAUNCH.
CUDA_GRAPH_INSTANTIATE_FLAG_USE_NODE_PRIORITY = 8
Run the graph using the per-node priority attributes rather than the priority of the stream it is launched into.
enum CUgraphNodeType

图节点类型

数值
CU_GRAPH_NODE_TYPE_KERNEL = 0
GPU kernel node
CU_GRAPH_NODE_TYPE_MEMCPY = 1
Memcpy node
CU_GRAPH_NODE_TYPE_MEMSET = 2
Memset node
CU_GRAPH_NODE_TYPE_HOST = 3
Host (executable) node
CU_GRAPH_NODE_TYPE_GRAPH = 4
Node which executes an embedded graph
CU_GRAPH_NODE_TYPE_EMPTY = 5
Empty (no-op) node
CU_GRAPH_NODE_TYPE_WAIT_EVENT = 6
External event wait node
CU_GRAPH_NODE_TYPE_EVENT_RECORD = 7
External event record node
CU_GRAPH_NODE_TYPE_EXT_SEMAS_SIGNAL = 8
External semaphore signal node
CU_GRAPH_NODE_TYPE_EXT_SEMAS_WAIT = 9
External semaphore wait node
CU_GRAPH_NODE_TYPE_MEM_ALLOC = 10
Memory Allocation Node
CU_GRAPH_NODE_TYPE_MEM_FREE = 11
Memory Free Node
CU_GRAPH_NODE_TYPE_BATCH_MEM_OP = 12
Batch MemOp Node
CU_GRAPH_NODE_TYPE_CONDITIONAL = 13
Conditional NodeMay be used to implement a conditional execution path or loop inside of a graph. The graph(s) contained within the body of the conditional node can be selectively executed or iterated upon based on the value of a conditional variable.Handles must be created in advance of creating the node using cuGraphConditionalHandleCreate.The following restrictions apply to graphs which contain conditional nodes: The graph cannot be used in a child node. Only one instantiation of the graph may exist at any point in time. The graph cannot be cloned.To set the control value, supply a default value when creating the handle and/or call cudaGraphSetConditional from device code.
enum CUgraphicsMapResourceFlags

用于映射和取消映射互操作资源的标志

数值
CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE = 0x00
CU_GRAPHICS_MAP_RESOURCE_FLAGS_READ_ONLY = 0x01
CU_GRAPHICS_MAP_RESOURCE_FLAGS_WRITE_DISCARD = 0x02
enum CUgraphicsRegisterFlags

用于注册图形资源的标志

数值
CU_GRAPHICS_REGISTER_FLAGS_NONE = 0x00
CU_GRAPHICS_REGISTER_FLAGS_READ_ONLY = 0x01
CU_GRAPHICS_REGISTER_FLAGS_WRITE_DISCARD = 0x02
CU_GRAPHICS_REGISTER_FLAGS_SURFACE_LDST = 0x04
CU_GRAPHICS_REGISTER_FLAGS_TEXTURE_GATHER = 0x08
enum CUipcMem_flags

CUDA IPC内存标志

数值
CU_IPC_MEM_LAZY_ENABLE_PEER_ACCESS = 0x1
Automatically enable peer access between remote devices as needed
enum CUjitInputType

设备代码格式

数值
CU_JIT_INPUT_CUBIN = 0
Compiled device-class-specific device code Applicable options: none
CU_JIT_INPUT_PTX = 1
PTX source code Applicable options: PTX compiler options
CU_JIT_INPUT_FATBINARY = 2
Bundle of multiple cubins and/or PTX of some device code Applicable options: PTX compiler options, CU_JIT_FALLBACK_STRATEGY
CU_JIT_INPUT_OBJECT = 3
Host object with embedded device code Applicable options: PTX compiler options, CU_JIT_FALLBACK_STRATEGY
CU_JIT_INPUT_LIBRARY = 4
Archive of host objects with embedded device code Applicable options: PTX compiler options, CU_JIT_FALLBACK_STRATEGY
CU_JIT_INPUT_NVVM = 5
已弃用

用于链接时优化的高级中间代码 适用选项:NVVM编译器选项,PTX编译器选项

仅适用于使用CUDA 12.0之前版本工具包编译的LTO-IR

CU_JIT_NUM_INPUT_TYPES = 6
enum CUjit_cacheMode

dlcm的缓存模式

数值
CU_JIT_CACHE_OPTION_NONE = 0
Compile with no -dlcm flag specified
CU_JIT_CACHE_OPTION_CG
Compile with L1 cache disabled
CU_JIT_CACHE_OPTION_CA
Compile with L1 cache enabled
enum CUjit_fallback

Cubin匹配回退策略

数值
CU_PREFER_PTX = 0
Prefer to compile ptx if exact binary match not found
CU_PREFER_BINARY
Prefer to fall back to compatible binary code if exact match not found
enum CUjit_option

在线编译器和链接器选项

数值
CU_JIT_MAX_REGISTERS = 0
Max number of registers that a thread may use. Option type: unsigned int Applies to: compiler only
CU_JIT_THREADS_PER_BLOCK = 1
IN: Specifies minimum number of threads per block to target compilation for OUT: Returns the number of threads the compiler actually targeted. This restricts the resource utilization of the compiler (e.g. max registers) such that a block with the given number of threads should be able to launch based on register limitations. Note, this option does not currently take into account any other resource limitations, such as shared memory utilization. Cannot be combined with CU_JIT_TARGET. Option type: unsigned int Applies to: compiler only
CU_JIT_WALL_TIME = 2
Overwrites the option value with the total wall clock time, in milliseconds, spent in the compiler and linker Option type: float Applies to: compiler and linker
CU_JIT_INFO_LOG_BUFFER = 3
Pointer to a buffer in which to print any log messages that are informational in nature (the buffer size is specified via option CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES) Option type: char * Applies to: compiler and linker
CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES = 4
IN: Log buffer size in bytes. Log messages will be capped at this size (including null terminator) OUT: Amount of log buffer filled with messages Option type: unsigned int Applies to: compiler and linker
CU_JIT_ERROR_LOG_BUFFER = 5
Pointer to a buffer in which to print any log messages that reflect errors (the buffer size is specified via option CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES) Option type: char * Applies to: compiler and linker
CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES = 6
IN: Log buffer size in bytes. Log messages will be capped at this size (including null terminator) OUT: Amount of log buffer filled with messages Option type: unsigned int Applies to: compiler and linker
CU_JIT_OPTIMIZATION_LEVEL = 7
Level of optimizations to apply to generated code (0 - 4), with 4 being the default and highest level of optimizations. Option type: unsigned int Applies to: compiler only
CU_JIT_TARGET_FROM_CUCONTEXT = 8
No option value required. Determines the target based on the current attached context (default) Option type: No option value needed Applies to: compiler and linker
CU_JIT_TARGET = 9
Target is chosen based on supplied CUjit_target. Cannot be combined with CU_JIT_THREADS_PER_BLOCK. Option type: unsigned int for enumerated type CUjit_target Applies to: compiler and linker
CU_JIT_FALLBACK_STRATEGY = 10
Specifies choice of fallback strategy if matching cubin is not found. Choice is based on supplied CUjit_fallback. This option cannot be used with cuLink* APIs as the linker requires exact matches. Option type: unsigned int for enumerated type CUjit_fallback Applies to: compiler only
CU_JIT_GENERATE_DEBUG_INFO = 11
Specifies whether to create debug information in output (-g) (0: false, default) Option type: int Applies to: compiler and linker
CU_JIT_LOG_VERBOSE = 12
Generate verbose log messages (0: false, default) Option type: int Applies to: compiler and linker
CU_JIT_GENERATE_LINE_INFO = 13
Generate line number information (-lineinfo) (0: false, default) Option type: int Applies to: compiler only
CU_JIT_CACHE_MODE = 14
Specifies whether to enable caching explicitly (-dlcm) Choice is based on supplied CUjit_cacheMode_enum. Option type: unsigned int for enumerated type CUjit_cacheMode_enum Applies to: compiler only
CU_JIT_NEW_SM3X_OPT = 15
已弃用

此jit选项已弃用,不应再使用。

CU_JIT_FAST_COMPILE = 16
This jit option is used for internal purpose only.
CU_JIT_GLOBAL_SYMBOL_NAMES = 17
Array of device symbol names that will be relocated to the corresponding host addresses stored in CU_JIT_GLOBAL_SYMBOL_ADDRESSES. Must contain CU_JIT_GLOBAL_SYMBOL_COUNT entries. When loading a device module, driver will relocate all encountered unresolved symbols to the host addresses. It is only allowed to register symbols that correspond to unresolved global variables. It is illegal to register the same device symbol at multiple addresses. Option type: const char ** Applies to: dynamic linker only
CU_JIT_GLOBAL_SYMBOL_ADDRESSES = 18
Array of host addresses that will be used to relocate corresponding device symbols stored in CU_JIT_GLOBAL_SYMBOL_NAMES. Must contain CU_JIT_GLOBAL_SYMBOL_COUNT entries. Option type: void ** Applies to: dynamic linker only
CU_JIT_GLOBAL_SYMBOL_COUNT = 19
Number of entries in CU_JIT_GLOBAL_SYMBOL_NAMES and CU_JIT_GLOBAL_SYMBOL_ADDRESSES arrays. Option type: unsigned int Applies to: dynamic linker only
CU_JIT_LTO = 20
已弃用

为设备代码启用链接时优化(-dlto)(默认禁用)。 此选项在32位平台上不受支持。 选项类型:整型 适用于:编译器和链接器

仅适用于使用CUDA 12.0之前版本工具包编译的LTO-IR

CU_JIT_FTZ = 21
已弃用

控制单精度非规格化数(-ftz)支持(0: 关闭,默认值)。1 : 将非规格化值刷新为零 0 : 保留非规格化值 选项类型: int 适用于: 通过CU_JIT_LTO指定的链接时优化

仅适用于使用CUDA 12.0之前版本工具包编译的LTO-IR

CU_JIT_PREC_DIV = 22
已弃用

控制单精度浮点数除法和倒数运算的支持 (-prec-div) (1: 启用,默认值)。1 : 启用IEEE最近舍入模式 0 : 启用快速近似模式 选项类型: int 适用于: 通过CU_JIT_LTO指定的链接时优化

仅适用于使用CUDA 12.0之前版本工具包编译的LTO-IR

CU_JIT_PREC_SQRT = 23
已弃用

控制单精度浮点平方根(-prec-sqrt)支持(1: 启用,默认值)。1: 启用IEEE四舍五入模式 0: 启用快速近似模式 选项类型: int 适用于: 通过CU_JIT_LTO指定的链接时优化

仅适用于使用CUDA 12.0之前版本工具包编译的LTO-IR

CU_JIT_FMA = 24
已弃用

启用/禁用将浮点乘法和加法/减法合并为浮点乘加运算(-fma)的功能 (1: 启用,默认值;0: 禁用)。选项类型: int 适用于: 通过CU_JIT_LTO指定的链接时优化

仅适用于使用CUDA 12.0之前版本工具包编译的LTO-IR

CU_JIT_REFERENCED_KERNEL_NAMES = 25
已弃用

在链接时应保留的内核名称数组,其他内核可被移除。 必须包含CU_JIT_REFERENCED_KERNEL_COUNT个条目。 注意编译器可能会对内核名称进行名称修饰,此时需要指定修饰后的名称。 可以使用通配符"*"来代表零个或多个字符,而无需指定完整或修饰后的名称。 需要特别注意的是,通配符"*"也会被隐式添加。例如,指定"foo"将匹配"foobaz"、 "barfoo"、"barfoobaz",从而保留所有具有这些名称的内核。可以通过提供更具体的名称 如"barfoobaz"来避免这种情况。 选项类型: const char ** 适用范围: 仅动态链接器

仅适用于使用CUDA 12.0之前版本工具包编译的LTO-IR

CU_JIT_REFERENCED_KERNEL_COUNT = 26
已弃用

CU_JIT_REFERENCED_KERNEL_NAMES数组中的条目数量。 选项类型:无符号整型 适用范围:仅动态链接器

仅适用于使用CUDA 12.0之前版本工具包编译的LTO-IR

CU_JIT_REFERENCED_VARIABLE_NAMES = 27
已弃用

应在链接时保留的变量名数组(__device__ 和/或 __constant__),其他变量可被移除。 必须包含 CU_JIT_REFERENCED_VARIABLE_COUNT 条目。 注意编译器可能会对变量名进行名称修饰,此时需要指定修饰后的名称。 可以使用通配符"*"代表零个或多个字符,而无需指定完整或修饰后的名称。 需要特别注意的是,通配符"*"也会被隐式添加。例如,指定"foo"将匹配"foobaz"、 "barfoo"、"barfoobaz",从而保留所有具有这些名称的变量。可以通过提供更具体的名称 如"barfoobaz"来避免这种情况。 选项类型: const char ** 适用于: 通过CU_JIT_LTO指定的链接时优化

仅适用于使用CUDA 12.0之前版本工具包编译的LTO-IR

CU_JIT_REFERENCED_VARIABLE_COUNT = 28
已弃用

CU_JIT_REFERENCED_VARIABLE_NAMES 数组中的条目数量。 选项类型:无符号整型 适用于:通过 CU_JIT_LTO 指定的链接时优化

仅适用于使用CUDA 12.0之前版本工具包编译的LTO-IR

CU_JIT_OPTIMIZE_UNUSED_DEVICE_VARIABLES = 29
已弃用

此选项作为提示,用于启用JIT编译器/链接器移除设备代码中未引用的常量(__constant__)和设备(__device__)变量(默认禁用)。 注意:若指定此选项,主机通过cuModuleGetGlobal()等API对常量和设备变量的引用可能导致未定义行为,除非使用CU_JIT_REFERENCED_VARIABLE_NAMES显式指定这些变量。 选项类型:int 适用范围:通过CU_JIT_LTO指定的链接时优化

仅适用于使用CUDA 12.0之前版本工具包编译的LTO-IR

CU_JIT_POSITION_INDEPENDENT_CODE = 30
Generate position independent code (0: false) Option type: int Applies to: compiler only
CU_JIT_MIN_CTA_PER_SM = 31
This option hints to the JIT compiler the minimum number of CTAs from the kernel’s grid to be mapped to a SM. This option is ignored when used together with CU_JIT_MAX_REGISTERS or CU_JIT_THREADS_PER_BLOCK. Optimizations based on this option need CU_JIT_MAX_THREADS_PER_BLOCK to be specified as well. For kernels already using PTX directive .minnctapersm, this option will be ignored by default. Use CU_JIT_OVERRIDE_DIRECTIVE_VALUES to let this option take precedence over the PTX directive. Option type: unsigned int Applies to: compiler only
CU_JIT_MAX_THREADS_PER_BLOCK = 32
Maximum number threads in a thread block, computed as the product of the maximum extent specifed for each dimension of the block. This limit is guaranteed not to be exeeded in any invocation of the kernel. Exceeding the the maximum number of threads results in runtime error or kernel launch failure. For kernels already using PTX directive .maxntid, this option will be ignored by default. Use CU_JIT_OVERRIDE_DIRECTIVE_VALUES to let this option take precedence over the PTX directive. Option type: int Applies to: compiler only
CU_JIT_OVERRIDE_DIRECTIVE_VALUES = 33
This option lets the values specified using CU_JIT_MAX_REGISTERS, CU_JIT_THREADS_PER_BLOCK, CU_JIT_MAX_THREADS_PER_BLOCK and CU_JIT_MIN_CTA_PER_SM take precedence over any PTX directives. (0: Disable, default; 1: Enable) Option type: int Applies to: compiler only
CU_JIT_NUM_OPTIONS
enum CUjit_target

在线编译目标

数值
CU_TARGET_COMPUTE_30 = 30
Compute device class 3.0
CU_TARGET_COMPUTE_32 = 32
Compute device class 3.2
CU_TARGET_COMPUTE_35 = 35
Compute device class 3.5
CU_TARGET_COMPUTE_37 = 37
Compute device class 3.7
CU_TARGET_COMPUTE_50 = 50
Compute device class 5.0
CU_TARGET_COMPUTE_52 = 52
Compute device class 5.2
CU_TARGET_COMPUTE_53 = 53
Compute device class 5.3
CU_TARGET_COMPUTE_60 = 60
Compute device class 6.0.
CU_TARGET_COMPUTE_61 = 61
Compute device class 6.1.
CU_TARGET_COMPUTE_62 = 62
Compute device class 6.2.
CU_TARGET_COMPUTE_70 = 70
Compute device class 7.0.
CU_TARGET_COMPUTE_72 = 72
Compute device class 7.2.
CU_TARGET_COMPUTE_75 = 75
Compute device class 7.5.
CU_TARGET_COMPUTE_80 = 80
Compute device class 8.0.
CU_TARGET_COMPUTE_86 = 86
Compute device class 8.6.
CU_TARGET_COMPUTE_87 = 87
Compute device class 8.7.
CU_TARGET_COMPUTE_89 = 89
Compute device class 8.9.
CU_TARGET_COMPUTE_90 = 90
Compute device class 9.0.
CU_TARGET_COMPUTE_100 = 100
Compute device class 10.0.
CU_TARGET_COMPUTE_101 = 101
Compute device class 10.1.
CU_TARGET_COMPUTE_120 = 120
Compute device class 12.0. Compute device class 9.0. with accelerated features.
CU_TARGET_COMPUTE_90A = CU_COMPUTE_ACCELERATED_TARGET_BASE+CU_TARGET_COMPUTE_90
Compute device class 10.0. with accelerated features.
CU_TARGET_COMPUTE_100A = CU_COMPUTE_ACCELERATED_TARGET_BASE+CU_TARGET_COMPUTE_100
Compute device class 10.1 with accelerated features.
CU_TARGET_COMPUTE_101A = CU_COMPUTE_ACCELERATED_TARGET_BASE+CU_TARGET_COMPUTE_101
Compute device class 12.0. with accelerated features.
CU_TARGET_COMPUTE_120A = CU_COMPUTE_ACCELERATED_TARGET_BASE+CU_TARGET_COMPUTE_120
enum CUlaunchAttributeID

启动属性枚举;用作CUlaunchAttribute的id字段

数值
CU_LAUNCH_ATTRIBUTE_IGNORE = 0
Ignored entry, for convenient composition
CU_LAUNCH_ATTRIBUTE_ACCESS_POLICY_WINDOW = 1
Valid for streams, graph nodes, launches. See CUlaunchAttributeValue::accessPolicyWindow.
CU_LAUNCH_ATTRIBUTE_COOPERATIVE = 2
Valid for graph nodes, launches. See CUlaunchAttributeValue::cooperative.
CU_LAUNCH_ATTRIBUTE_SYNCHRONIZATION_POLICY = 3
Valid for streams. See CUlaunchAttributeValue::syncPolicy.
CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION = 4
Valid for graph nodes, launches. See CUlaunchAttributeValue::clusterDim.
CU_LAUNCH_ATTRIBUTE_CLUSTER_SCHEDULING_POLICY_PREFERENCE = 5
Valid for graph nodes, launches. See CUlaunchAttributeValue::clusterSchedulingPolicyPreference.
CU_LAUNCH_ATTRIBUTE_PROGRAMMATIC_STREAM_SERIALIZATION = 6
Valid for launches. Setting CUlaunchAttributeValue::programmaticStreamSerializationAllowed to non-0 signals that the kernel will use programmatic means to resolve its stream dependency, so that the CUDA runtime should opportunistically allow the grid's execution to overlap with the previous kernel in the stream, if that kernel requests the overlap. The dependent launches can choose to wait on the dependency using the programmatic sync (cudaGridDependencySynchronize() or equivalent PTX instructions).
CU_LAUNCH_ATTRIBUTE_PROGRAMMATIC_EVENT = 7
Valid for launches. Set CUlaunchAttributeValue::programmaticEvent to record the event. Event recorded through this launch attribute is guaranteed to only trigger after all block in the associated kernel trigger the event. A block can trigger the event through PTX launchdep.release or CUDA builtin function cudaTriggerProgrammaticLaunchCompletion(). A trigger can also be inserted at the beginning of each block's execution if triggerAtBlockStart is set to non-0. The dependent launches can choose to wait on the dependency using the programmatic sync (cudaGridDependencySynchronize() or equivalent PTX instructions). Note that dependents (including the CPU thread calling cuEventSynchronize()) are not guaranteed to observe the release precisely when it is released. For example, cuEventSynchronize() may only observe the event trigger long after the associated kernel has completed. This recording type is primarily meant for establishing programmatic dependency between device tasks. Note also this type of dependency allows, but does not guarantee, concurrent execution of tasks. The event supplied must not be an interprocess or interop event. The event must disable timing (i.e. must be created with the CU_EVENT_DISABLE_TIMING flag set).
CU_LAUNCH_ATTRIBUTE_PRIORITY = 8
Valid for streams, graph nodes, launches. See CUlaunchAttributeValue::priority.
CU_LAUNCH_ATTRIBUTE_MEM_SYNC_DOMAIN_MAP = 9
Valid for streams, graph nodes, launches. See CUlaunchAttributeValue::memSyncDomainMap.
CU_LAUNCH_ATTRIBUTE_MEM_SYNC_DOMAIN = 10
Valid for streams, graph nodes, launches. See CUlaunchAttributeValue::memSyncDomain.
CU_LAUNCH_ATTRIBUTE_PREFERRED_CLUSTER_DIMENSION = 11
Valid for graph nodes, launches. Set CUlaunchAttributeValue::preferredClusterDim to allow the kernel launch to specify a preferred substitute cluster dimension. Blocks may be grouped according to either the dimensions specified with this attribute (grouped into a "preferred substitute cluster"), or the one specified with CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION attribute (grouped into a "regular cluster"). The cluster dimensions of a "preferred substitute cluster" shall be an integer multiple greater than zero of the regular cluster dimensions. The device will attempt - on a best-effort basis - to group thread blocks into preferred clusters over grouping them into regular clusters. When it deems necessary (primarily when the device temporarily runs out of physical resources to launch the larger preferred clusters), the device may switch to launch the regular clusters instead to attempt to utilize as much of the physical device resources as possible. Each type of cluster will have its enumeration / coordinate setup as if the grid consists solely of its type of cluster. For example, if the preferred substitute cluster dimensions double the regular cluster dimensions, there might be simultaneously a regular cluster indexed at (1,0,0), and a preferred cluster indexed at (1,0,0). In this example, the preferred substitute cluster (1,0,0) replaces regular clusters (2,0,0) and (3,0,0) and groups their blocks. This attribute will only take effect when a regular cluster dimension has been specified. The preferred substitute cluster dimension must be an integer multiple greater than zero of the regular cluster dimension and must divide the grid. It must also be no more than `maxBlocksPerCluster`, if it is set in the kernel's `__launch_bounds__`. Otherwise it must be less than the maximum value the driver can support. Otherwise, setting this attribute to a value physically unable to fit on any particular device is permitted.
CU_LAUNCH_ATTRIBUTE_LAUNCH_COMPLETION_EVENT = 12
Valid for launches. Set CUlaunchAttributeValue::launchCompletionEvent to record the event. Nominally, the event is triggered once all blocks of the kernel have begun execution. Currently this is a best effort. If a kernel B has a launch completion dependency on a kernel A, B may wait until A is complete. Alternatively, blocks of B may begin before all blocks of A have begun, for example if B can claim execution resources unavailable to A (e.g. they run on different GPUs) or if B is a higher priority than A. Exercise caution if such an ordering inversion could lead to deadlock. A launch completion event is nominally similar to a programmatic event with triggerAtBlockStart set except that it is not visible to cudaGridDependencySynchronize() and can be used with compute capability less than 9.0. The event supplied must not be an interprocess or interop event. The event must disable timing (i.e. must be created with the CU_EVENT_DISABLE_TIMING flag set).
CU_LAUNCH_ATTRIBUTE_DEVICE_UPDATABLE_KERNEL_NODE = 13
Valid for graph nodes, launches. This attribute is graphs-only, and passing it to a launch in a non-capturing stream will result in an error. CUlaunchAttributeValue::deviceUpdatableKernelNode::deviceUpdatable can only be set to 0 or 1. Setting the field to 1 indicates that the corresponding kernel node should be device-updatable. On success, a handle will be returned via CUlaunchAttributeValue::deviceUpdatableKernelNode::devNode which can be passed to the various device-side update functions to update the node's kernel parameters from within another kernel. For more information on the types of device updates that can be made, as well as the relevant limitations thereof, see cudaGraphKernelNodeUpdatesApply. Nodes which are device-updatable have additional restrictions compared to regular kernel nodes. Firstly, device-updatable nodes cannot be removed from their graph via cuGraphDestroyNode. Additionally, once opted-in to this functionality, a node cannot opt out, and any attempt to set the deviceUpdatable attribute to 0 will result in an error. Device-updatable kernel nodes also cannot have their attributes copied to/from another kernel node via cuGraphKernelNodeCopyAttributes. Graphs containing one or more device-updatable nodes also do not allow multiple instantiation, and neither the graph nor its instantiated version can be passed to cuGraphExecUpdate. If a graph contains device-updatable nodes and updates those nodes from the device from within the graph, the graph must be uploaded with cuGraphUpload before it is launched. For such a graph, if host-side executable graph updates are made to the device-updatable nodes, the graph must be uploaded before it is launched again.
CU_LAUNCH_ATTRIBUTE_PREFERRED_SHARED_MEMORY_CARVEOUT = 14
Valid for launches. On devices where the L1 cache and shared memory use the same hardware resources, setting CUlaunchAttributeValue::sharedMemCarveout to a percentage between 0-100 signals the CUDA driver to set the shared memory carveout preference, in percent of the total shared memory for that kernel launch. This attribute takes precedence over CU_FUNC_ATTRIBUTE_PREFERRED_SHARED_MEMORY_CARVEOUT. This is only a hint, and the CUDA driver can choose a different configuration if required for the launch.
enum CUlaunchMemSyncDomain

内存同步域

内核可以在指定的内存同步域中启动,这将影响该内核发出的所有内存操作。 在一个域中发出的内存屏障仅会排序该域中的内存操作,从而消除因内存屏障排序无关流量而增加的延迟。

默认情况下,内核在域0中启动。使用CU_LAUNCH_MEM_SYNC_DOMAIN_REMOTE启动的内核将具有不同的域ID。用户还可以通过CUlaunchMemSyncDomainMap为特定流/图节点/内核启动修改域ID。请参阅CU_LAUNCH_ATTRIBUTE_MEM_SYNC_DOMAINcuStreamSetAttributecuLaunchKernelExcuGraphKernelNodeSetAttribute

Memory operations done in kernels launched in different domains are considered system-scope distanced. In other words, a GPU scoped memory synchronization is not sufficient for memory order to be observed by kernels in another memory synchronization domain even if they are on the same GPU.

数值
CU_LAUNCH_MEM_SYNC_DOMAIN_DEFAULT = 0
Launch kernels in the default domain
CU_LAUNCH_MEM_SYNC_DOMAIN_REMOTE = 1
Launch kernels in the remote domain
enum CUlibraryOption

库选项,需通过cuLibraryLoadData()cuLibraryLoadFromFile()指定

数值
CU_LIBRARY_HOST_UNIVERSAL_FUNCTION_AND_DATA_TABLE = 0
CU_LIBRARY_BINARY_IS_PRESERVED = 1
Specifes that the argument code passed to cuLibraryLoadData() will be preserved. Specifying this option will let the driver know that code can be accessed at any point until cuLibraryUnload(). The default behavior is for the driver to allocate and maintain its own copy of code. Note that this is only a memory usage optimization hint and the driver can choose to ignore it if required. Specifying this option with cuLibraryLoadFromFile() is invalid and will return CUDA_ERROR_INVALID_VALUE.
CU_LIBRARY_NUM_OPTIONS
enum CUlimit

限制

数值
CU_LIMIT_STACK_SIZE = 0x00
GPU thread stack size
CU_LIMIT_PRINTF_FIFO_SIZE = 0x01
GPU printf FIFO size
CU_LIMIT_MALLOC_HEAP_SIZE = 0x02
GPU malloc heap size
CU_LIMIT_DEV_RUNTIME_SYNC_DEPTH = 0x03
GPU device runtime launch synchronize depth
CU_LIMIT_DEV_RUNTIME_PENDING_LAUNCH_COUNT = 0x04
GPU device runtime pending launch count
CU_LIMIT_MAX_L2_FETCH_GRANULARITY = 0x05
A value between 0 and 128 that indicates the maximum fetch granularity of L2 (in Bytes). This is a hint
CU_LIMIT_PERSISTING_L2_CACHE_SIZE = 0x06
A size in bytes for L2 persisting lines cache size
CU_LIMIT_SHMEM_SIZE = 0x07
A maximum size in bytes of shared memory available to CUDA kernels on a CIG context. Can only be queried, cannot be set
CU_LIMIT_CIG_ENABLED = 0x08
A non-zero value indicates this CUDA context is a CIG-enabled context. Can only be queried, cannot be set
CU_LIMIT_CIG_SHMEM_FALLBACK_ENABLED = 0x09
When set to zero, CUDA will fail to launch a kernel on a CIG context, instead of using the fallback path, if the kernel uses more shared memory than available
CU_LIMIT_MAX
enum CUmemAccess_flags

指定用于映射的内存保护标志。

数值
CU_MEM_ACCESS_FLAGS_PROT_NONE = 0x0
Default, make the address range not accessible
CU_MEM_ACCESS_FLAGS_PROT_READ = 0x1
Make the address range read accessible
CU_MEM_ACCESS_FLAGS_PROT_READWRITE = 0x3
Make the address range read-write accessible
CU_MEM_ACCESS_FLAGS_PROT_MAX = 0x7FFFFFFF
enum CUmemAllocationCompType

指定分配的压缩属性。

数值
CU_MEM_ALLOCATION_COMP_NONE = 0x0
Allocating non-compressible memory
CU_MEM_ALLOCATION_COMP_GENERIC = 0x1
Allocating compressible memory
enum CUmemAllocationGranularity_flags

用于请求分配的不同最优和所需粒度的标志。

数值
CU_MEM_ALLOC_GRANULARITY_MINIMUM = 0x0
Minimum required granularity for allocation
CU_MEM_ALLOC_GRANULARITY_RECOMMENDED = 0x1
Recommended granularity for allocation for best performance
enum CUmemAllocationHandleType

用于指定特定句柄类型的标志

数值
CU_MEM_HANDLE_TYPE_NONE = 0x0
Does not allow any export mechanism. >
CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR = 0x1
Allows a file descriptor to be used for exporting. Permitted only on POSIX systems. (int)
CU_MEM_HANDLE_TYPE_WIN32 = 0x2
Allows a Win32 NT handle to be used for exporting. (HANDLE)
CU_MEM_HANDLE_TYPE_WIN32_KMT = 0x4
Allows a Win32 KMT handle to be used for exporting. (D3DKMT_HANDLE)
CU_MEM_HANDLE_TYPE_FABRIC = 0x8
Allows a fabric handle to be used for exporting. (CUmemFabricHandle)
CU_MEM_HANDLE_TYPE_MAX = 0x7FFFFFFF
enum CUmemAllocationType

定义可用的分配类型

数值
CU_MEM_ALLOCATION_TYPE_INVALID = 0x0
CU_MEM_ALLOCATION_TYPE_PINNED = 0x1
This allocation type is 'pinned', i.e. cannot migrate from its current location while the application is actively using it
CU_MEM_ALLOCATION_TYPE_MAX = 0x7FFFFFFF
enum CUmemAttach_flags

CUDA内存附加标志

数值
CU_MEM_ATTACH_GLOBAL = 0x1
Memory can be accessed by any stream on any device
CU_MEM_ATTACH_HOST = 0x2
Memory cannot be accessed by any stream on any device
CU_MEM_ATTACH_SINGLE = 0x4
Memory can only be accessed by a single stream on the associated device
enum CUmemHandleType

内存句柄类型

数值
CU_MEM_HANDLE_TYPE_GENERIC = 0
enum CUmemLocationType

指定位置类型

数值
CU_MEM_LOCATION_TYPE_INVALID = 0x0
CU_MEM_LOCATION_TYPE_DEVICE = 0x1
Location is a device location, thus id is a device ordinal
CU_MEM_LOCATION_TYPE_HOST = 0x2
Location is host, id is ignored
CU_MEM_LOCATION_TYPE_HOST_NUMA = 0x3
Location is a host NUMA node, thus id is a host NUMA node id
CU_MEM_LOCATION_TYPE_HOST_NUMA_CURRENT = 0x4
Location is a host NUMA node of the current thread, id is ignored
CU_MEM_LOCATION_TYPE_MAX = 0x7FFFFFFF
enum CUmemOperationType

内存操作类型

数值
CU_MEM_OPERATION_TYPE_MAP = 1
CU_MEM_OPERATION_TYPE_UNMAP = 2
enum CUmemPool_attribute

CUDA内存池属性

数值
CU_MEMPOOL_ATTR_REUSE_FOLLOW_EVENT_DEPENDENCIES = 1
(value type = int) Allow cuMemAllocAsync to use memory asynchronously freed in another streams as long as a stream ordering dependency of the allocating stream on the free action exists. Cuda events and null stream interactions can create the required stream ordered dependencies. (default enabled)
CU_MEMPOOL_ATTR_REUSE_ALLOW_OPPORTUNISTIC
(value type = int) Allow reuse of already completed frees when there is no dependency between the free and allocation. (default enabled)
CU_MEMPOOL_ATTR_REUSE_ALLOW_INTERNAL_DEPENDENCIES
(value type = int) Allow cuMemAllocAsync to insert new stream dependencies in order to establish the stream ordering required to reuse a piece of memory released by cuFreeAsync (default enabled).
CU_MEMPOOL_ATTR_RELEASE_THRESHOLD
(value type = cuuint64_t) Amount of reserved memory in bytes to hold onto before trying to release memory back to the OS. When more than the release threshold bytes of memory are held by the memory pool, the allocator will try to release memory back to the OS on the next call to stream, event or context synchronize. (default 0)
CU_MEMPOOL_ATTR_RESERVED_MEM_CURRENT
(value type = cuuint64_t) Amount of backing memory currently allocated for the mempool.
CU_MEMPOOL_ATTR_RESERVED_MEM_HIGH
(value type = cuuint64_t) High watermark of backing memory allocated for the mempool since the last time it was reset. High watermark can only be reset to zero.
CU_MEMPOOL_ATTR_USED_MEM_CURRENT
(value type = cuuint64_t) Amount of memory from the pool that is currently in use by the application.
CU_MEMPOOL_ATTR_USED_MEM_HIGH
(value type = cuuint64_t) High watermark of the amount of memory from the pool that was in use by the application since the last time it was reset. High watermark can only be reset to zero.
enum CUmemRangeFlags

用于请求地址范围句柄类型的标志。

数值
CU_MEM_RANGE_FLAG_DMA_BUF_MAPPING_TYPE_PCIE = 0x1
Indicates that DMA_BUF handle should be mapped via PCIe BAR1
enum CUmemRangeHandleType

指定地址范围的处理类型

数值
CU_MEM_RANGE_HANDLE_TYPE_DMA_BUF_FD = 0x1
CU_MEM_RANGE_HANDLE_TYPE_MAX = 0x7FFFFFFF
enum CUmem_advise

内存建议值

数值
CU_MEM_ADVISE_SET_READ_MOSTLY = 1
Data will mostly be read and only occasionally be written to
CU_MEM_ADVISE_UNSET_READ_MOSTLY = 2
Undo the effect of CU_MEM_ADVISE_SET_READ_MOSTLY
CU_MEM_ADVISE_SET_PREFERRED_LOCATION = 3
Set the preferred location for the data as the specified device
CU_MEM_ADVISE_UNSET_PREFERRED_LOCATION = 4
Clear the preferred location for the data
CU_MEM_ADVISE_SET_ACCESSED_BY = 5
Data will be accessed by the specified device, so prevent page faults as much as possible
CU_MEM_ADVISE_UNSET_ACCESSED_BY = 6
Let the Unified Memory subsystem decide on the page faulting policy for the specified device
enum CUmemcpy3DOperandType

这些标志允许应用程序为cuMemcpy3DBatchAsync中指定的各个副本传递操作数类型。

数值
CU_MEMCPY_OPERAND_TYPE_POINTER = 0x1
Memcpy operand is a valid pointer.
CU_MEMCPY_OPERAND_TYPE_ARRAY = 0x2
Memcpy operand is a CUarray.
CU_MEMCPY_OPERAND_TYPE_MAX = 0x7FFFFFFF
enum CUmemcpyFlags

用于指定批量复制操作的标志。更多详情请参阅cuMemcpyBatchAsync

数值
CU_MEMCPY_FLAG_DEFAULT = 0x0
CU_MEMCPY_FLAG_PREFER_OVERLAP_WITH_COMPUTE = 0x1
Hint to the driver to try and overlap the copy with compute work on the SMs.
enum CUmemcpySrcAccessOrder

这些标志允许应用程序指定CUDA必须维护的源访问顺序。目标将始终按照流顺序访问。

数值
CU_MEMCPY_SRC_ACCESS_ORDER_INVALID = 0x0
Default invalid.
CU_MEMCPY_SRC_ACCESS_ORDER_STREAM = 0x1
Indicates that access to the source pointer must be in stream order.
CU_MEMCPY_SRC_ACCESS_ORDER_DURING_API_CALL = 0x2
Indicates that access to the source pointer can be out of stream order and all accesses must be complete before the API call returns. This flag is suited for ephemeral sources (ex., stack variables) when it's known that no prior operations in the stream can be accessing the memory and also that the lifetime of the memory is limited to the scope that the source variable was declared in. Specifying this flag allows the driver to optimize the copy and removes the need for the user to synchronize the stream after the API call.
CU_MEMCPY_SRC_ACCESS_ORDER_ANY = 0x3
Indicates that access to the source pointer can be out of stream order and the accesses can happen even after the API call returns. This flag is suited for host pointers allocated outside CUDA (ex., via malloc) when it's known that no prior operations in the stream can be accessing the memory. Specifying this flag allows the driver to optimize the copy on certain platforms.
CU_MEMCPY_SRC_ACCESS_ORDER_MAX = 0x7FFFFFFF
enum CUmemorytype

内存类型

数值
CU_MEMORYTYPE_HOST = 0x01
Host memory
CU_MEMORYTYPE_DEVICE = 0x02
Device memory
CU_MEMORYTYPE_ARRAY = 0x03
Array memory
CU_MEMORYTYPE_UNIFIED = 0x04
Unified device or host memory
enum CUmulticastGranularity_flags

用于查询多播对象不同粒度的标志

数值
CU_MULTICAST_GRANULARITY_MINIMUM = 0x0
Minimum required granularity
CU_MULTICAST_GRANULARITY_RECOMMENDED = 0x1
Recommended granularity for best performance
enum CUoccupancy_flags

占用计算器标志

数值
CU_OCCUPANCY_DEFAULT = 0x0
Default behavior
CU_OCCUPANCY_DISABLE_CACHING_OVERRIDE = 0x1
Assume global caching is enabled and cannot be automatically turned off
enum CUpointer_attribute

指针信息

数值
CU_POINTER_ATTRIBUTE_CONTEXT = 1
The CUcontext on which a pointer was allocated or registered
CU_POINTER_ATTRIBUTE_MEMORY_TYPE = 2
The CUmemorytype describing the physical location of a pointer
CU_POINTER_ATTRIBUTE_DEVICE_POINTER = 3
The address at which a pointer's memory may be accessed on the device
CU_POINTER_ATTRIBUTE_HOST_POINTER = 4
The address at which a pointer's memory may be accessed on the host
CU_POINTER_ATTRIBUTE_P2P_TOKENS = 5
A pair of tokens for use with the nv-p2p.h Linux kernel interface
CU_POINTER_ATTRIBUTE_SYNC_MEMOPS = 6
Synchronize every synchronous memory operation initiated on this region
CU_POINTER_ATTRIBUTE_BUFFER_ID = 7
A process-wide unique ID for an allocated memory region
CU_POINTER_ATTRIBUTE_IS_MANAGED = 8
Indicates if the pointer points to managed memory
CU_POINTER_ATTRIBUTE_DEVICE_ORDINAL = 9
A device ordinal of a device on which a pointer was allocated or registered
CU_POINTER_ATTRIBUTE_IS_LEGACY_CUDA_IPC_CAPABLE = 10
1 if this pointer maps to an allocation that is suitable for cudaIpcGetMemHandle, 0 otherwise
CU_POINTER_ATTRIBUTE_RANGE_START_ADDR = 11
Starting address for this requested pointer
CU_POINTER_ATTRIBUTE_RANGE_SIZE = 12
Size of the address range for this requested pointer
CU_POINTER_ATTRIBUTE_MAPPED = 13
1 if this pointer is in a valid address range that is mapped to a backing allocation, 0 otherwise
CU_POINTER_ATTRIBUTE_ALLOWED_HANDLE_TYPES = 14
Bitmask of allowed CUmemAllocationHandleType for this allocation
CU_POINTER_ATTRIBUTE_IS_GPU_DIRECT_RDMA_CAPABLE = 15
1 if the memory this pointer is referencing can be used with the GPUDirect RDMA API
CU_POINTER_ATTRIBUTE_ACCESS_FLAGS = 16
Returns the access flags the device associated with the current context has on the corresponding memory referenced by the pointer given
CU_POINTER_ATTRIBUTE_MEMPOOL_HANDLE = 17
Returns the mempool handle for the allocation if it was allocated from a mempool. Otherwise returns NULL.
CU_POINTER_ATTRIBUTE_MAPPING_SIZE = 18
Size of the actual underlying mapping that the pointer belongs to
CU_POINTER_ATTRIBUTE_MAPPING_BASE_ADDR = 19
The start address of the mapping that the pointer belongs to
CU_POINTER_ATTRIBUTE_MEMORY_BLOCK_ID = 20
A process-wide unique id corresponding to the physical allocation the pointer belongs to
CU_POINTER_ATTRIBUTE_IS_HW_DECOMPRESS_CAPABLE = 21
Returns in *data a boolean that indicates whether the pointer points to memory that is capable to be used for hardware accelerated decompression.
enum CUprocessState

CUDA进程状态

数值
CU_PROCESS_STATE_RUNNING = 0
Default process state
CU_PROCESS_STATE_LOCKED
CUDA API locks are taken so further CUDA API calls will block
CU_PROCESS_STATE_CHECKPOINTED
Application memory contents have been checkpointed and underlying allocations and device handles have been released
CU_PROCESS_STATE_FAILED
Application entered an uncorrectable error during the checkpoint/restore process
enum CUresourceViewFormat

资源视图格式

数值
CU_RES_VIEW_FORMAT_NONE = 0x00
No resource view format (use underlying resource format)
CU_RES_VIEW_FORMAT_UINT_1X8 = 0x01
1 channel unsigned 8-bit integers
CU_RES_VIEW_FORMAT_UINT_2X8 = 0x02
2 channel unsigned 8-bit integers
CU_RES_VIEW_FORMAT_UINT_4X8 = 0x03
4 channel unsigned 8-bit integers
CU_RES_VIEW_FORMAT_SINT_1X8 = 0x04
1 channel signed 8-bit integers
CU_RES_VIEW_FORMAT_SINT_2X8 = 0x05
2 channel signed 8-bit integers
CU_RES_VIEW_FORMAT_SINT_4X8 = 0x06
4 channel signed 8-bit integers
CU_RES_VIEW_FORMAT_UINT_1X16 = 0x07
1 channel unsigned 16-bit integers
CU_RES_VIEW_FORMAT_UINT_2X16 = 0x08
2 channel unsigned 16-bit integers
CU_RES_VIEW_FORMAT_UINT_4X16 = 0x09
4 channel unsigned 16-bit integers
CU_RES_VIEW_FORMAT_SINT_1X16 = 0x0a
1 channel signed 16-bit integers
CU_RES_VIEW_FORMAT_SINT_2X16 = 0x0b
2 channel signed 16-bit integers
CU_RES_VIEW_FORMAT_SINT_4X16 = 0x0c
4 channel signed 16-bit integers
CU_RES_VIEW_FORMAT_UINT_1X32 = 0x0d
1 channel unsigned 32-bit integers
CU_RES_VIEW_FORMAT_UINT_2X32 = 0x0e
2 channel unsigned 32-bit integers
CU_RES_VIEW_FORMAT_UINT_4X32 = 0x0f
4 channel unsigned 32-bit integers
CU_RES_VIEW_FORMAT_SINT_1X32 = 0x10
1 channel signed 32-bit integers
CU_RES_VIEW_FORMAT_SINT_2X32 = 0x11
2 channel signed 32-bit integers
CU_RES_VIEW_FORMAT_SINT_4X32 = 0x12
4 channel signed 32-bit integers
CU_RES_VIEW_FORMAT_FLOAT_1X16 = 0x13
1 channel 16-bit floating point
CU_RES_VIEW_FORMAT_FLOAT_2X16 = 0x14
2 channel 16-bit floating point
CU_RES_VIEW_FORMAT_FLOAT_4X16 = 0x15
4 channel 16-bit floating point
CU_RES_VIEW_FORMAT_FLOAT_1X32 = 0x16
1 channel 32-bit floating point
CU_RES_VIEW_FORMAT_FLOAT_2X32 = 0x17
2 channel 32-bit floating point
CU_RES_VIEW_FORMAT_FLOAT_4X32 = 0x18
4 channel 32-bit floating point
CU_RES_VIEW_FORMAT_UNSIGNED_BC1 = 0x19
Block compressed 1
CU_RES_VIEW_FORMAT_UNSIGNED_BC2 = 0x1a
Block compressed 2
CU_RES_VIEW_FORMAT_UNSIGNED_BC3 = 0x1b
Block compressed 3
CU_RES_VIEW_FORMAT_UNSIGNED_BC4 = 0x1c
Block compressed 4 unsigned
CU_RES_VIEW_FORMAT_SIGNED_BC4 = 0x1d
Block compressed 4 signed
CU_RES_VIEW_FORMAT_UNSIGNED_BC5 = 0x1e
Block compressed 5 unsigned
CU_RES_VIEW_FORMAT_SIGNED_BC5 = 0x1f
Block compressed 5 signed
CU_RES_VIEW_FORMAT_UNSIGNED_BC6H = 0x20
Block compressed 6 unsigned half-float
CU_RES_VIEW_FORMAT_SIGNED_BC6H = 0x21
Block compressed 6 signed half-float
CU_RES_VIEW_FORMAT_UNSIGNED_BC7 = 0x22
Block compressed 7
enum CUresourcetype

资源类型

数值
CU_RESOURCE_TYPE_ARRAY = 0x00
Array resource
CU_RESOURCE_TYPE_MIPMAPPED_ARRAY = 0x01
Mipmapped array resource
CU_RESOURCE_TYPE_LINEAR = 0x02
Linear resource
CU_RESOURCE_TYPE_PITCH2D = 0x03
Pitch 2D resource
enum CUresult

错误代码

数值
CUDA_SUCCESS = 0
The API call returned with no errors. In the case of query calls, this also means that the operation being queried is complete (see cuEventQuery() and cuStreamQuery()).
CUDA_ERROR_INVALID_VALUE = 1
This indicates that one or more of the parameters passed to the API call is not within an acceptable range of values.
CUDA_ERROR_OUT_OF_MEMORY = 2
The API call failed because it was unable to allocate enough memory or other resources to perform the requested operation.
CUDA_ERROR_NOT_INITIALIZED = 3
This indicates that the CUDA driver has not been initialized with cuInit() or that initialization has failed.
CUDA_ERROR_DEINITIALIZED = 4
This indicates that the CUDA driver is in the process of shutting down.
CUDA_ERROR_PROFILER_DISABLED = 5
This indicates profiler is not initialized for this run. This can happen when the application is running with external profiling tools like visual profiler.
CUDA_ERROR_PROFILER_NOT_INITIALIZED = 6
已弃用

从CUDA 5.0开始,此错误返回已被弃用。现在即使未初始化,尝试通过cuProfilerStartcuProfilerStop启用/禁用性能分析也不再被视为错误。

CUDA_ERROR_PROFILER_ALREADY_STARTED = 7
已弃用

自CUDA 5.0起,此错误返回已被弃用。当性能分析已启用时调用cuProfilerStart()不再被视为错误。

CUDA_ERROR_PROFILER_ALREADY_STOPPED = 8
已弃用

自CUDA 5.0起,此错误返回已被弃用。当性能分析已禁用时调用cuProfilerStop()不再被视为错误。

CUDA_ERROR_STUB_LIBRARY = 34
This indicates that the CUDA driver that the application has loaded is a stub library. Applications that run with the stub rather than a real driver loaded will result in CUDA API returning this error.
CUDA_ERROR_DEVICE_UNAVAILABLE = 46
This indicates that requested CUDA device is unavailable at the current time. Devices are often unavailable due to use of CU_COMPUTEMODE_EXCLUSIVE_PROCESS or CU_COMPUTEMODE_PROHIBITED.
CUDA_ERROR_NO_DEVICE = 100
This indicates that no CUDA-capable devices were detected by the installed CUDA driver.
CUDA_ERROR_INVALID_DEVICE = 101
This indicates that the device ordinal supplied by the user does not correspond to a valid CUDA device or that the action requested is invalid for the specified device.
CUDA_ERROR_DEVICE_NOT_LICENSED = 102
This error indicates that the Grid license is not applied.
CUDA_ERROR_INVALID_IMAGE = 200
This indicates that the device kernel image is invalid. This can also indicate an invalid CUDA module.
CUDA_ERROR_INVALID_CONTEXT = 201
This most frequently indicates that there is no context bound to the current thread. This can also be returned if the context passed to an API call is not a valid handle (such as a context that has had cuCtxDestroy() invoked on it). This can also be returned if a user mixes different API versions (i.e. 3010 context with 3020 API calls). See cuCtxGetApiVersion() for more details. This can also be returned if the green context passed to an API call was not converted to a CUcontext using cuCtxFromGreenCtx API.
CUDA_ERROR_CONTEXT_ALREADY_CURRENT = 202
已弃用

自CUDA 3.2版本起,此错误返回已被弃用。尝试通过cuCtxPushCurrent()推送当前上下文不再被视为错误。

这表明作为参数传递给API调用的上下文已经是当前活跃的上下文。

CUDA_ERROR_MAP_FAILED = 205
This indicates that a map or register operation has failed.
CUDA_ERROR_UNMAP_FAILED = 206
This indicates that an unmap or unregister operation has failed.
CUDA_ERROR_ARRAY_IS_MAPPED = 207
This indicates that the specified array is currently mapped and thus cannot be destroyed.
CUDA_ERROR_ALREADY_MAPPED = 208
This indicates that the resource is already mapped.
CUDA_ERROR_NO_BINARY_FOR_GPU = 209
This indicates that there is no kernel image available that is suitable for the device. This can occur when a user specifies code generation options for a particular CUDA source file that do not include the corresponding device configuration.
CUDA_ERROR_ALREADY_ACQUIRED = 210
This indicates that a resource has already been acquired.
CUDA_ERROR_NOT_MAPPED = 211
This indicates that a resource is not mapped.
CUDA_ERROR_NOT_MAPPED_AS_ARRAY = 212
This indicates that a mapped resource is not available for access as an array.
CUDA_ERROR_NOT_MAPPED_AS_POINTER = 213
This indicates that a mapped resource is not available for access as a pointer.
CUDA_ERROR_ECC_UNCORRECTABLE = 214
This indicates that an uncorrectable ECC error was detected during execution.
CUDA_ERROR_UNSUPPORTED_LIMIT = 215
This indicates that the CUlimit passed to the API call is not supported by the active device.
CUDA_ERROR_CONTEXT_ALREADY_IN_USE = 216
This indicates that the CUcontext passed to the API call can only be bound to a single CPU thread at a time but is already bound to a CPU thread.
CUDA_ERROR_PEER_ACCESS_UNSUPPORTED = 217
This indicates that peer access is not supported across the given devices.
CUDA_ERROR_INVALID_PTX = 218
This indicates that a PTX JIT compilation failed.
CUDA_ERROR_INVALID_GRAPHICS_CONTEXT = 219
This indicates an error with OpenGL or DirectX context.
CUDA_ERROR_NVLINK_UNCORRECTABLE = 220
This indicates that an uncorrectable NVLink error was detected during the execution.
CUDA_ERROR_JIT_COMPILER_NOT_FOUND = 221
This indicates that the PTX JIT compiler library was not found.
CUDA_ERROR_UNSUPPORTED_PTX_VERSION = 222
This indicates that the provided PTX was compiled with an unsupported toolchain.
CUDA_ERROR_JIT_COMPILATION_DISABLED = 223
This indicates that the PTX JIT compilation was disabled.
CUDA_ERROR_UNSUPPORTED_EXEC_AFFINITY = 224
This indicates that the CUexecAffinityType passed to the API call is not supported by the active device.
CUDA_ERROR_UNSUPPORTED_DEVSIDE_SYNC = 225
This indicates that the code to be compiled by the PTX JIT contains unsupported call to cudaDeviceSynchronize.
CUDA_ERROR_CONTAINED = 226
This indicates that an exception occurred on the device that is now contained by the GPU's error containment capability. Common causes are - a. Certain types of invalid accesses of peer GPU memory over nvlink b. Certain classes of hardware errors This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
CUDA_ERROR_INVALID_SOURCE = 300
This indicates that the device kernel source is invalid. This includes compilation/linker errors encountered in device code or user error.
CUDA_ERROR_FILE_NOT_FOUND = 301
This indicates that the file specified was not found.
CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND = 302
This indicates that a link to a shared object failed to resolve.
CUDA_ERROR_SHARED_OBJECT_INIT_FAILED = 303
This indicates that initialization of a shared object failed.
CUDA_ERROR_OPERATING_SYSTEM = 304
This indicates that an OS call failed.
CUDA_ERROR_INVALID_HANDLE = 400
This indicates that a resource handle passed to the API call was not valid. Resource handles are opaque types like CUstream and CUevent.
CUDA_ERROR_ILLEGAL_STATE = 401
This indicates that a resource required by the API call is not in a valid state to perform the requested operation.
CUDA_ERROR_LOSSY_QUERY = 402
This indicates an attempt was made to introspect an object in a way that would discard semantically important information. This is either due to the object using funtionality newer than the API version used to introspect it or omission of optional return arguments.
CUDA_ERROR_NOT_FOUND = 500
This indicates that a named symbol was not found. Examples of symbols are global/constant variable names, driver function names, texture names, and surface names.
CUDA_ERROR_NOT_READY = 600
This indicates that asynchronous operations issued previously have not completed yet. This result is not actually an error, but must be indicated differently than CUDA_SUCCESS (which indicates completion). Calls that may return this value include cuEventQuery() and cuStreamQuery().
CUDA_ERROR_ILLEGAL_ADDRESS = 700
While executing a kernel, the device encountered a load or store instruction on an invalid memory address. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES = 701
This indicates that a launch did not occur because it did not have appropriate resources. This error usually indicates that the user has attempted to pass too many arguments to the device kernel, or the kernel launch specifies too many threads for the kernel's register count. Passing arguments of the wrong size (i.e. a 64-bit pointer when a 32-bit int is expected) is equivalent to passing too many arguments and can also result in this error.
CUDA_ERROR_LAUNCH_TIMEOUT = 702
This indicates that the device kernel took too long to execute. This can only occur if timeouts are enabled - see the device attribute CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT for more information. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING = 703
This error indicates a kernel launch that uses an incompatible texturing mode.
CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED = 704
This error indicates that a call to cuCtxEnablePeerAccess() is trying to re-enable peer access to a context which has already had peer access to it enabled.
CUDA_ERROR_PEER_ACCESS_NOT_ENABLED = 705
This error indicates that cuCtxDisablePeerAccess() is trying to disable peer access which has not been enabled yet via cuCtxEnablePeerAccess().
CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE = 708
This error indicates that the primary context for the specified device has already been initialized.
CUDA_ERROR_CONTEXT_IS_DESTROYED = 709
This error indicates that the context current to the calling thread has been destroyed using cuCtxDestroy, or is a primary context which has not yet been initialized.
CUDA_ERROR_ASSERT = 710
A device-side assert triggered during kernel execution. The context cannot be used anymore, and must be destroyed. All existing device memory allocations from this context are invalid and must be reconstructed if the program is to continue using CUDA.
CUDA_ERROR_TOO_MANY_PEERS = 711
This error indicates that the hardware resources required to enable peer access have been exhausted for one or more of the devices passed to cuCtxEnablePeerAccess().
CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED = 712
This error indicates that the memory range passed to cuMemHostRegister() has already been registered.
CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED = 713
This error indicates that the pointer passed to cuMemHostUnregister() does not correspond to any currently registered memory region.
CUDA_ERROR_HARDWARE_STACK_ERROR = 714
While executing a kernel, the device encountered a stack error. This can be due to stack corruption or exceeding the stack size limit. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
CUDA_ERROR_ILLEGAL_INSTRUCTION = 715
While executing a kernel, the device encountered an illegal instruction. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
CUDA_ERROR_MISALIGNED_ADDRESS = 716
While executing a kernel, the device encountered a load or store instruction on a memory address which is not aligned. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
CUDA_ERROR_INVALID_ADDRESS_SPACE = 717
While executing a kernel, the device encountered an instruction which can only operate on memory locations in certain address spaces (global, shared, or local), but was supplied a memory address not belonging to an allowed address space. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
CUDA_ERROR_INVALID_PC = 718
While executing a kernel, the device program counter wrapped its address space. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
CUDA_ERROR_LAUNCH_FAILED = 719
An exception occurred on the device while executing a kernel. Common causes include dereferencing an invalid device pointer and accessing out of bounds shared memory. Less common cases can be system specific - more information about these cases can be found in the system specific user guide. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
CUDA_ERROR_COOPERATIVE_LAUNCH_TOO_LARGE = 720
This error indicates that the number of blocks launched per grid for a kernel that was launched via either cuLaunchCooperativeKernel or cuLaunchCooperativeKernelMultiDevice exceeds the maximum number of blocks as allowed by cuOccupancyMaxActiveBlocksPerMultiprocessor or cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags times the number of multiprocessors as specified by the device attribute CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT.
CUDA_ERROR_TENSOR_MEMORY_LEAK = 721
An exception occurred on the device while exiting a kernel using tensor memory: the tensor memory was not completely deallocated. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
CUDA_ERROR_NOT_PERMITTED = 800
This error indicates that the attempted operation is not permitted.
CUDA_ERROR_NOT_SUPPORTED = 801
This error indicates that the attempted operation is not supported on the current system or device.
CUDA_ERROR_SYSTEM_NOT_READY = 802
This error indicates that the system is not yet ready to start any CUDA work. To continue using CUDA, verify the system configuration is in a valid state and all required driver daemons are actively running. More information about this error can be found in the system specific user guide.
CUDA_ERROR_SYSTEM_DRIVER_MISMATCH = 803
This error indicates that there is a mismatch between the versions of the display driver and the CUDA driver. Refer to the compatibility documentation for supported versions.
CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE = 804
This error indicates that the system was upgraded to run with forward compatibility but the visible hardware detected by CUDA does not support this configuration. Refer to the compatibility documentation for the supported hardware matrix or ensure that only supported hardware is visible during initialization via the CUDA_VISIBLE_DEVICES environment variable.
CUDA_ERROR_MPS_CONNECTION_FAILED = 805
This error indicates that the MPS client failed to connect to the MPS control daemon or the MPS server.
CUDA_ERROR_MPS_RPC_FAILURE = 806
This error indicates that the remote procedural call between the MPS server and the MPS client failed.
CUDA_ERROR_MPS_SERVER_NOT_READY = 807
This error indicates that the MPS server is not ready to accept new MPS client requests. This error can be returned when the MPS server is in the process of recovering from a fatal failure.
CUDA_ERROR_MPS_MAX_CLIENTS_REACHED = 808
This error indicates that the hardware resources required to create MPS client have been exhausted.
CUDA_ERROR_MPS_MAX_CONNECTIONS_REACHED = 809
This error indicates the the hardware resources required to support device connections have been exhausted.
CUDA_ERROR_MPS_CLIENT_TERMINATED = 810
This error indicates that the MPS client has been terminated by the server. To continue using CUDA, the process must be terminated and relaunched.
CUDA_ERROR_CDP_NOT_SUPPORTED = 811
This error indicates that the module is using CUDA Dynamic Parallelism, but the current configuration, like MPS, does not support it.
CUDA_ERROR_CDP_VERSION_MISMATCH = 812
This error indicates that a module contains an unsupported interaction between different versions of CUDA Dynamic Parallelism.
CUDA_ERROR_STREAM_CAPTURE_UNSUPPORTED = 900
This error indicates that the operation is not permitted when the stream is capturing.
CUDA_ERROR_STREAM_CAPTURE_INVALIDATED = 901
This error indicates that the current capture sequence on the stream has been invalidated due to a previous error.
CUDA_ERROR_STREAM_CAPTURE_MERGE = 902
This error indicates that the operation would have resulted in a merge of two independent capture sequences.
CUDA_ERROR_STREAM_CAPTURE_UNMATCHED = 903
This error indicates that the capture was not initiated in this stream.
CUDA_ERROR_STREAM_CAPTURE_UNJOINED = 904
This error indicates that the capture sequence contains a fork that was not joined to the primary stream.
CUDA_ERROR_STREAM_CAPTURE_ISOLATION = 905
This error indicates that a dependency would have been created which crosses the capture sequence boundary. Only implicit in-stream ordering dependencies are allowed to cross the boundary.
CUDA_ERROR_STREAM_CAPTURE_IMPLICIT = 906
This error indicates a disallowed implicit dependency on a current capture sequence from cudaStreamLegacy.
CUDA_ERROR_CAPTURED_EVENT = 907
This error indicates that the operation is not permitted on an event which was last recorded in a capturing stream.
CUDA_ERROR_STREAM_CAPTURE_WRONG_THREAD = 908
A stream capture sequence not initiated with the CU_STREAM_CAPTURE_MODE_RELAXED argument to cuStreamBeginCapture was passed to cuStreamEndCapture in a different thread.
CUDA_ERROR_TIMEOUT = 909
This error indicates that the timeout specified for the wait operation has lapsed.
CUDA_ERROR_GRAPH_EXEC_UPDATE_FAILURE = 910
This error indicates that the graph update was not performed because it included changes which violated constraints specific to instantiated graph update.
CUDA_ERROR_EXTERNAL_DEVICE = 911
This indicates that an async error has occurred in a device outside of CUDA. If CUDA was waiting for an external device's signal before consuming shared data, the external device signaled an error indicating that the data is not valid for consumption. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.
CUDA_ERROR_INVALID_CLUSTER_SIZE = 912
Indicates a kernel launch error due to cluster misconfiguration.
CUDA_ERROR_FUNCTION_NOT_LOADED = 913
Indiciates a function handle is not loaded when calling an API that requires a loaded function.
CUDA_ERROR_INVALID_RESOURCE_TYPE = 914
This error indicates one or more resources passed in are not valid resource types for the operation.
CUDA_ERROR_INVALID_RESOURCE_CONFIGURATION = 915
This error indicates one or more resources are insufficient or non-applicable for the operation.
CUDA_ERROR_KEY_ROTATION = 916
This error indicates that an error happened during the key rotation sequence.
CUDA_ERROR_UNKNOWN = 999
This indicates that an unknown internal error has occurred.
enum CUshared_carveout

共享内存预留配置。这些可以传递给cuFuncSetAttributecuKernelSetAttribute

数值
CU_SHAREDMEM_CARVEOUT_DEFAULT = -1
No preference for shared memory or L1 (default)
CU_SHAREDMEM_CARVEOUT_MAX_SHARED = 100
Prefer maximum available shared memory, minimum L1 cache
CU_SHAREDMEM_CARVEOUT_MAX_L1 = 0
Prefer maximum available L1 cache, minimum shared memory
enum CUsharedconfig
已弃用

Shared memory configurations
数值
CU_SHARED_MEM_CONFIG_DEFAULT_BANK_SIZE = 0x00
set default shared memory bank size
CU_SHARED_MEM_CONFIG_FOUR_BYTE_BANK_SIZE = 0x01
set shared memory bank width to four bytes
CU_SHARED_MEM_CONFIG_EIGHT_BYTE_BANK_SIZE = 0x02
set shared memory bank width to eight bytes
enum CUstreamBatchMemOpType
数值
CU_STREAM_MEM_OP_WAIT_VALUE_32 = 1
Represents a cuStreamWaitValue32 operation
CU_STREAM_MEM_OP_WRITE_VALUE_32 = 2
Represents a cuStreamWriteValue32 operation
CU_STREAM_MEM_OP_WAIT_VALUE_64 = 4
Represents a cuStreamWaitValue64 operation
CU_STREAM_MEM_OP_WRITE_VALUE_64 = 5
Represents a cuStreamWriteValue64 operation
CU_STREAM_MEM_OP_BARRIER = 6
Insert a memory barrier of the specified type
CU_STREAM_MEM_OP_FLUSH_REMOTE_WRITES = 3
This has the same effect as CU_STREAM_WAIT_VALUE_FLUSH, but as a standalone operation.
enum CUstreamCaptureMode

流捕获线程交互的可能模式。更多详情请参阅cuStreamBeginCapturecuThreadExchangeStreamCaptureMode

数值
CU_STREAM_CAPTURE_MODE_GLOBAL = 0
CU_STREAM_CAPTURE_MODE_THREAD_LOCAL = 1
CU_STREAM_CAPTURE_MODE_RELAXED = 2
enum CUstreamCaptureStatus

cuStreamIsCapturing返回的可能流捕获状态

数值
CU_STREAM_CAPTURE_STATUS_NONE = 0
Stream is not capturing
CU_STREAM_CAPTURE_STATUS_ACTIVE = 1
Stream is actively capturing
CU_STREAM_CAPTURE_STATUS_INVALIDATED = 2
Stream is part of a capture sequence that has been invalidated, but not terminated
enum CUstreamMemoryBarrier_flags

cuStreamMemoryBarrier 的标志位

数值
CU_STREAM_MEMORY_BARRIER_TYPE_SYS = 0x0
System-wide memory barrier.
CU_STREAM_MEMORY_BARRIER_TYPE_GPU = 0x1
Limit memory barrier scope to the GPU.
enum CUstreamUpdateCaptureDependencies_flags
数值
CU_STREAM_ADD_CAPTURE_DEPENDENCIES = 0x0
Add new nodes to the dependency set
CU_STREAM_SET_CAPTURE_DEPENDENCIES = 0x1
Replace the dependency set with the new nodes
enum CUstreamWaitValue_flags
数值
CU_STREAM_WAIT_VALUE_GEQ = 0x0
Wait until (int32_t)(*addr - value) >= 0 (or int64_t for 64 bit values). Note this is a cyclic comparison which ignores wraparound. (Default behavior.)
CU_STREAM_WAIT_VALUE_EQ = 0x1
Wait until *addr == value.
CU_STREAM_WAIT_VALUE_AND = 0x2
Wait until (*addr & value) != 0.
CU_STREAM_WAIT_VALUE_NOR = 0x3
Wait until ~(*addr | value) != 0. Support for this operation can be queried with cuDeviceGetAttribute() and CU_DEVICE_ATTRIBUTE_CAN_USE_STREAM_WAIT_VALUE_NOR.
CU_STREAM_WAIT_VALUE_FLUSH = 1<<30
Follow the wait operation with a flush of outstanding remote writes. This means that, if a remote write operation is guaranteed to have reached the device before the wait can be satisfied, that write is guaranteed to be visible to downstream device work. The device is permitted to reorder remote writes internally. For example, this flag would be required if two remote writes arrive in a defined order, the wait is satisfied by the second write, and downstream work needs to observe the first write. Support for this operation is restricted to selected platforms and can be queried with CU_DEVICE_ATTRIBUTE_CAN_FLUSH_REMOTE_WRITES.
enum CUstreamWriteValue_flags
数值
CU_STREAM_WRITE_VALUE_DEFAULT = 0x0
Default behavior
CU_STREAM_WRITE_VALUE_NO_MEMORY_BARRIER = 0x1
Permits the write to be reordered with writes which were issued before it, as a performance optimization. Normally, cuStreamWriteValue32 will provide a memory fence before the write, which has similar semantics to __threadfence_system() but is scoped to the stream rather than a CUDA thread. This flag is not supported in the v2 API.
enum CUstream_flags

流创建标志

数值
CU_STREAM_DEFAULT = 0x0
Default stream flag
CU_STREAM_NON_BLOCKING = 0x1
Stream does not synchronize with stream 0 (the NULL stream)
enum CUtensorMapDataType

张量映射数据类型

数值
CU_TENSOR_MAP_DATA_TYPE_UINT8 = 0
CU_TENSOR_MAP_DATA_TYPE_UINT16
CU_TENSOR_MAP_DATA_TYPE_UINT32
CU_TENSOR_MAP_DATA_TYPE_INT32
CU_TENSOR_MAP_DATA_TYPE_UINT64
CU_TENSOR_MAP_DATA_TYPE_INT64
CU_TENSOR_MAP_DATA_TYPE_FLOAT16
CU_TENSOR_MAP_DATA_TYPE_FLOAT32
CU_TENSOR_MAP_DATA_TYPE_FLOAT64
CU_TENSOR_MAP_DATA_TYPE_BFLOAT16
CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ
CU_TENSOR_MAP_DATA_TYPE_TFLOAT32
CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ
CU_TENSOR_MAP_DATA_TYPE_16U4_ALIGN8B
CU_TENSOR_MAP_DATA_TYPE_16U4_ALIGN16B
CU_TENSOR_MAP_DATA_TYPE_16U6_ALIGN16B
enum CUtensorMapFloatOOBfill

张量映射越界填充类型

数值
CU_TENSOR_MAP_FLOAT_OOB_FILL_NONE = 0
CU_TENSOR_MAP_FLOAT_OOB_FILL_NAN_REQUEST_ZERO_FMA
enum CUtensorMapIm2ColWideMode

张量映射 Im2Col 宽模式

数值
CU_TENSOR_MAP_IM2COL_WIDE_MODE_W = 0
CU_TENSOR_MAP_IM2COL_WIDE_MODE_W128
enum CUtensorMapInterleave

张量映射交错布局类型

数值
CU_TENSOR_MAP_INTERLEAVE_NONE = 0
CU_TENSOR_MAP_INTERLEAVE_16B
CU_TENSOR_MAP_INTERLEAVE_32B
enum CUtensorMapL2promotion

张量映射L2提升类型

数值
CU_TENSOR_MAP_L2_PROMOTION_NONE = 0
CU_TENSOR_MAP_L2_PROMOTION_L2_64B
CU_TENSOR_MAP_L2_PROMOTION_L2_128B
CU_TENSOR_MAP_L2_PROMOTION_L2_256B
enum CUtensorMapSwizzle

共享内存存储体的张量映射混洗模式

数值
CU_TENSOR_MAP_SWIZZLE_NONE = 0
CU_TENSOR_MAP_SWIZZLE_32B
CU_TENSOR_MAP_SWIZZLE_64B
CU_TENSOR_MAP_SWIZZLE_128B
CU_TENSOR_MAP_SWIZZLE_128B_ATOM_32B
CU_TENSOR_MAP_SWIZZLE_128B_ATOM_32B_FLIP_8B
CU_TENSOR_MAP_SWIZZLE_128B_ATOM_64B
enum CUuserObjectRetain_flags

用于保留图中用户对象引用的标志

数值
CU_GRAPH_USER_OBJECT_MOVE = 1
Transfer references from the caller rather than creating new references.
enum CUuserObject_flags

图形用户对象的标志

数值
CU_USER_OBJECT_NO_DESTRUCTOR_SYNC = 1
Indicates the destructor execution is not synchronized by any CUDA handle.
enum cl_context_flags

NVCL上下文调度标志

数值
NVCL_CTX_SCHED_AUTO = 0x00
Automatic scheduling
NVCL_CTX_SCHED_SPIN = 0x01
Set spin as default scheduling
NVCL_CTX_SCHED_YIELD = 0x02
Set yield as default scheduling
NVCL_CTX_SCHED_BLOCKING_SYNC = 0x04
Set blocking synchronization as default scheduling
enum cl_event_flags

NVCL事件调度标志

数值
NVCL_EVENT_SCHED_AUTO = 0x00
Automatic scheduling
NVCL_EVENT_SCHED_SPIN = 0x01
Set spin as default scheduling
NVCL_EVENT_SCHED_YIELD = 0x02
Set yield as default scheduling
NVCL_EVENT_SCHED_BLOCKING_SYNC = 0x04
Set blocking synchronization as default scheduling