Skip to main content

🆕 Databricks

LiteLLM 支持 Databricks 上的所有模型

tip

我们支持所有 Databricks 模型,只需在发送 litellm 请求时将 model=databricks/<任意-databricks-模型> 作为前缀

使用方法

环境变量

import os 
os.environ["DATABRICKS_API_KEY"] = ""
os.environ["DATABRICKS_API_BASE"] = ""

示例调用

from litellm import completion
import os
## 设置环境变量
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks base url" # 例如:https://adb-3064715882934586.6.azuredatabricks.net/serving-endpoints

# Databricks dbrx-instruct 调用
response = completion(
model="databricks/databricks-dbrx-instruct",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)

传递额外参数 - max_tokens, temperature

查看所有支持的 litellm.completion 参数 这里

# !pip install litellm
from litellm import completion
import os
## 设置环境变量
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks api base"

# databricks dbrx 调用
response = completion(
model="databricks/databricks-dbrx-instruct",
messages = [{ "content": "Hello, how are you?","role": "user"}],
max_tokens=20,
temperature=0.5
)

代理

  model_list:
- model_name: llama-3
litellm_params:
model: databricks/databricks-meta-llama-3-70b-instruct
api_key: os.environ/DATABRICKS_API_KEY
max_tokens: 20
temperature: 0.5

传递 Databricks 特定参数 - 'instruction'

对于嵌入模型,databricks 允许您传递额外的参数 'instruction'。完整规范

# !pip install litellm
from litellm import embedding
import os
## 设置环境变量
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks url"

# Databricks bge-large-en 调用
response = litellm.embedding(
model="databricks/databricks-bge-large-en",
input=["good morning from litellm"],
instruction="Represent this sentence for searching relevant passages:",
)

代理

  model_list:
- model_name: bge-large
litellm_params:
model: databricks/databricks-bge-large-en
api_key: os.environ/DATABRICKS_API_KEY
api_base: os.environ/DATABRICKS_API_BASE
instruction: "Represent this sentence for searching relevant passages:"

支持的 Databricks 聊天完成模型

tip

我们支持所有 Databricks 模型,只需在发送 litellm 请求时将 model=databricks/<任意-databricks-模型> 作为前缀

模型名称命令
databricks-meta-llama-3-1-70b-instructcompletion(model='databricks/databricks-meta-llama-3-1-70b-instruct', messages=messages)
databricks-meta-llama-3-1-405b-instructcompletion(model='databricks/databricks-meta-llama-3-1-405b-instruct', messages=messages)
databricks-dbrx-instructcompletion(model='databricks/databricks-dbrx-instruct', messages=messages)
databricks-meta-llama-3-70b-instructcompletion(model='databricks/databricks-meta-llama-3-70b-instruct', messages=messages)
databricks-llama-2-70b-chatcompletion(model='databricks/databricks-llama-2-70b-chat', messages=messages)
databricks-mixtral-8x7b-instructcompletion(model='databricks/databricks-mixtral-8x7b-instruct', messages=messages)
databricks-mpt-30b-instructcompletion(model='databricks/databricks-mpt-30b-instruct', messages=messages)
databricks-mpt-7b-instructcompletion(model='databricks/databricks-mpt-7b-instruct', messages=messages)

支持的Databricks嵌入模型

tip

我们支持所有Databricks模型,只需在发送litellm请求时将model=databricks/<任何在Databricks上的模型>设置为前缀

模型名称命令
databricks-bge-large-enembedding(model='databricks/databricks-bge-large-en', messages=messages)
databricks-gte-large-enembedding(model='databricks/databricks-gte-large-en', messages=messages)
优云智算