40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263 | class TopicNodeParser(NodeParser):
"""Topic Based node parser."""
max_chunk_size: int = Field(
default=1000,
description="The maximum number of tokens in a chunk.",
)
window_size: int = Field(
default=5,
description="Paragraph sliding window size",
)
llm: LLM = Field(
description="The LLM model to use for parsing.",
)
similarity_method: str = Field(
default="llm",
description="The method to use for determining if a new proposition belongs to the same topic. Choose 'llm' or 'embedding'.",
)
embed_model: SerializeAsAny[BaseEmbedding] = Field(
description="The embedding model to use for determining similarity between propositions.",
)
similarity_threshold: float = Field(
default=0.8,
description="The threshold for determining similarity between propositions.",
)
tokenizer: Callable = Field(
description="The tokenizer to use for tokenizing text.",
)
@classmethod
def class_name(cls) -> str:
return "TopicNodeParser"
@classmethod
def from_defaults(
cls,
callback_manager: Optional[CallbackManager] = None,
id_func: Optional[Callable[[int, Document], str]] = None,
tokenizer: Optional[Callable] = None,
max_chunk_size: int = 1000,
window_size: int = 5,
llm: Optional[LLM] = None,
embed_model: Optional[BaseEmbedding] = None,
similarity_method: str = "llm",
similarity_threshold: float = 0.8,
) -> "TopicNodeParser":
"""Initialize with parameters."""
from llama_index.core import Settings
callback_manager = callback_manager or CallbackManager([])
id_func = id_func or default_id_func
tokenizer = tokenizer or get_tokenizer()
llm = llm or Settings.llm
embed_model = embed_model or Settings.embed_model
return cls(
callback_manager=callback_manager,
id_func=id_func,
tokenizer=tokenizer,
max_chunk_size=max_chunk_size,
window_size=window_size,
llm=llm,
embed_model=embed_model,
similarity_threshold=similarity_threshold,
similarity_method=similarity_method,
)
def _parse_nodes(
self,
nodes: Sequence[BaseNode],
show_progress: bool = False,
**kwargs: Any,
) -> List[BaseNode]:
"""Parse document into nodes."""
all_nodes: List[BaseNode] = []
nodes_with_progress = get_tqdm_iterable(nodes, show_progress, "Parsing nodes")
for node in nodes_with_progress:
nodes = self.build_topic_based_nodes_from_documents([node])
all_nodes.extend(nodes)
return all_nodes
def split_into_paragraphs(self, text: str) -> List[str]:
"""Split the document into paragraphs based on line breaks."""
return re.split(r"\n\s*\n", text)
def proposition_transfer(self, paragraph: str) -> List[str]:
"""
Convert a paragraph into a list of self-sustaining statements using LLM.
"""
messages = [
ChatMessage(role="system", content=PROPOSITION_SYSTEM_PROMPT),
ChatMessage(role="user", content=paragraph),
]
response = str(self.llm.chat(messages))
json_start = response.find("[")
json_end = response.rfind("]") + 1
if json_start != -1 and json_end != -1:
json_content = response[json_start:json_end]
# Parse the JSON response
try:
return json.loads(json_content)
except json.JSONDecodeError:
print(f"Failed to parse JSON: {json_content}")
return []
else:
print(f"No valid JSON found in the response: {response}")
return []
def is_same_topic_llm(self, current_chunk: List[str], new_proposition: str) -> bool:
"""
Use zero-shot classification with LLM to determine if the new proposition belongs to the same topic.
"""
current_text = " ".join(current_chunk)
messages = [
ChatMessage(role="system", content=TOPIC_CLASSIFICATION_SYSTEM_PROMPT),
ChatMessage(
role="user",
content=f"Text 1: {current_text}\n\nText 2: {new_proposition}",
),
]
response = self.llm.chat(messages)
return "same topic" in str(response).lower()
def is_same_topic_embedding(
self, current_chunk: List[str], new_proposition: str
) -> bool:
"""
Use embedding-based similarity to determine if the new proposition belongs to the same topic.
"""
current_text = " ".join(current_chunk)
current_text_embedding = self.embed_model.get_text_embedding(current_text)
new_proposition_embedding = self.embed_model.get_text_embedding(new_proposition)
similarity_score = similarity(current_text_embedding, new_proposition_embedding)
return similarity_score > self.similarity_threshold
def semantic_chunking(self, paragraphs: List[str]) -> List[str]:
"""
Perform semantic chunking on the given paragraphs.
max_chunk_size: It is based on hard threshold of 1000 characters.
As per paper the hard threshold that the longest chunk cannot excess the context length limitation of LLM.
Here we are using 1000 tokens as the threshold.
"""
chunks: List[str] = []
current_chunk: List[str] = []
current_chunk_size: int = 0
half_window = self.window_size // 2
# Cache for storing propositions
proposition_cache: Dict[int, List[str]] = {}
for i in range(len(paragraphs)):
# Define the window range
start_idx = max(0, i - half_window)
end_idx = min(len(paragraphs), i + half_window + 1)
# Generate and cache propositions for paragraphs in the window
window_propositions = []
for j in range(start_idx, end_idx):
if j not in proposition_cache:
proposition_cache[j] = self.proposition_transfer(paragraphs[j])
window_propositions.extend(proposition_cache[j])
for prop in window_propositions:
if current_chunk:
if self.similarity_method == "llm":
is_same_topic = self.is_same_topic_llm(current_chunk, prop)
elif self.similarity_method == "embedding":
is_same_topic = self.is_same_topic_embedding(
current_chunk, prop
)
else:
raise ValueError(
"Invalid similarity method. Choose 'llm' or 'embedding'."
)
else:
is_same_topic = True
if not current_chunk or (
is_same_topic
and current_chunk_size + len(self.tokenizer(prop))
<= self.max_chunk_size
):
current_chunk.append(prop)
current_chunk_size += len(prop)
else:
chunks.append(" ".join(current_chunk))
current_chunk = [prop]
current_chunk_size = len(self.tokenizer(prop))
# If we've reached the max chunk size, start a new chunk
if current_chunk_size >= self.max_chunk_size:
chunks.append(" ".join(current_chunk))
current_chunk = []
current_chunk_size = 0
if current_chunk:
chunks.append(" ".join(current_chunk))
return chunks
def build_topic_based_nodes_from_documents(
self, documents: Sequence[Document]
) -> List[BaseNode]:
"""Build topic based nodes from documents."""
all_nodes: List[BaseNode] = []
for doc in documents:
paragraphs = self.split_into_paragraphs(doc.text)
chunks = self.semantic_chunking(paragraphs)
nodes = build_nodes_from_splits(
chunks,
doc,
id_func=self.id_func,
)
all_nodes.extend(nodes)
return all_nodes
|